Colin Peter Kenyon
Council of Scientific and Industrial Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Colin Peter Kenyon.
Malaria Journal | 2009
Vinod Kasam; Jean Salzemann; Marli Botha; Ana Dacosta; Gianluca Degliesposti; Raul Isea; Doman Kim; Astrid Maass; Colin Peter Kenyon; Giulio Rastelli; Martin Hofmann-Apitius; Vincent Breton
BackgroundDespite continuous efforts of the international community to reduce the impact of malaria on developing countries, no significant progress has been made in the recent years and the discovery of new drugs is more than ever needed. Out of the many proteins involved in the metabolic activities of the Plasmodium parasite, some are promising targets to carry out rational drug discovery.MotivationRecent years have witnessed the emergence of grids, which are highly distributed computing infrastructures particularly well fitted for embarrassingly parallel computations like docking. In 2005, a first attempt at using grids for large-scale virtual screening focused on plasmepsins and ended up in the identification of previously unknown scaffolds, which were confirmed in vitro to be active plasmepsin inhibitors. Following this success, a second deployment took place in the fall of 2006 focussing on one well known target, dihydrofolate reductase (DHFR), and on a new promising one, glutathione-S-transferase.MethodsIn silico drug design, especially vHTS is a widely and well-accepted technology in lead identification and lead optimization. This approach, therefore builds, upon the progress made in computational chemistry to achieve more accurate in silico docking and in information technology to design and operate large scale grid infrastructures.ResultsOn the computational side, a sustained infrastructure has been developed: docking at large scale, using different strategies in result analysis, storing of the results on the fly into MySQL databases and application of molecular dynamics refinement are MM-PBSA and MM-GBSA rescoring. The modeling results obtained are very promising. Based on the modeling results, In vitro results are underway for all the targets against which screening is performed.ConclusionThe current paper describes the rational drug discovery activity at large scale, especially molecular docking using FlexX software on computational grids in finding hits against three different targets (PfGST, PfDHFR, PvDHFR (wild type and mutant forms) implicated in malaria. Grid-enabled virtual screening approach is proposed to produce focus compound libraries for other biological targets relevant to fight the infectious diseases of the developing world.
Synthetic Communications | 2010
Babalwa S. B. Gxoyiya; Perry T. Kaye; Colin Peter Kenyon
A series of mono- and dihydroxyalkyl- and -alkyloxybenzimidazoles and their phosphorylated derivatives have been prepared as adenosine triphoshate analogues for investigation as potential M. Tb. glutamine synthetase inhibitors.
Synthetic Communications | 2011
Sheriff Salisu; Colin Peter Kenyon; Perry T. Kaye
Abstract In research directed at the development of adenine triphosphate (ATP) analogs as potential glutamine synthetase (GS) inhibitors, adenine and allopurinol derivatives have been synthesized either as novel ATP analogs or as scaffolds for the construction of such analogs.
Synthetic Communications | 2009
Marius Mutorwa; Sheriff Salisu; Colin Peter Kenyon; Perry T. Kaye
Abstract Access to a series of truncated ATP analogs, as potential anti-tuberculosis agents, has been explored via alkylation and acylation of 3-aminophenol, whereas chloroacetylation, using chloroacetyl chloride, and subsequent Arbuzov phosphonation of a series of 3-substituted anilines have afforded a series of phosphonate derivatives as potential antimalarial agents.
BMC Biochemistry | 2011
Colin Peter Kenyon; Anjo Steyn; Robyn Roth; Paul Steenkamp; Thokozani C Nkosi; Lyndon Carey Oldfield
BackgroundThe kinome comprises functionally diverse enzymes, with the current classification indicating very little about the extent of conserved regulatory mechanisms associated with phosphoryl transfer. The apparent Km of the kinases ranges from less than 0.4 μM to in excess of 1000 μM for ATP. It is not known how this diverse range of enzymes mechanistically achieves the regulation of catalysis via an affinity range for ATP varying by three-orders of magnitude.ResultsWe have demonstrated a previously undiscovered mechanism in kinase and synthetase enzymes where the overall rate of reaction is regulated via the C8-H of ATP. Using ATP deuterated at the C8 position (C8D-ATP) as a molecular probe it was shown that the C8-H plays a direct role in the regulation of the overall rate of reaction in a range of kinase and synthetase enzymes. Using comparative studies on the effect of the concentration of ATP and C8D-ATP on the activity of the enzymes we demonstrated that not only did C8D-ATP give a kinetic isotope effect (KIE) but the KIEs obtained are clearly not secondary KIE effects as the magnitude of the KIE in all cases was at least 2 fold and in most cases in excess of 7 fold.ConclusionsKinase and synthetase enzymes utilise C8D-ATP in preference to non-deuterated ATP. The KIE obtained at low ATP concentrations is clearly a primary KIE demonstrating strong evidence that the bond to the isotopically substituted hydrogen is being broken. The effect of the ATP concentration profile on the KIE was used to develop a model whereby the C8H of ATP plays a role in the overall regulation of phosphoryl transfer. This role of the C8H of ATP in the regulation of substrate binding appears to have been conserved in all kinase and synthetase enzymes as one of the mechanisms associated with binding of ATP. The induction of the C8H to be labile by active site residues coordinated to the ATP purine ring may play a significant role in explaining the broad range of Km associated with kinase enzymes.
BMC Biochemistry | 2012
Colin Peter Kenyon; Robyn Roth
BackgroundIt has been demonstrated that the adenyl moiety of ATP plays a direct role in the regulation of ATP binding and/or phosphoryl transfer within a range of kinase and synthetase enzymes. The role of the C8-H of ATP in the binding and/or phosphoryl transfer on the enzyme activity of a number of kinase and synthetase enzymes has been elucidated. The intrinsic catalysis rate mediated by each kinase enzyme is complex, yielding apparent KM values ranging from less than 0.4 μM to more than 1 mM for ATP in the various kinases. Using a combination of ATP deuterated at the C8 position (C8D-ATP) as a molecular probe with site directed mutagenesis (SDM) of conserved amino acid residues in shikimate kinase and adenylate kinase active sites, we have elucidated a mechanism by which the ATP C8-H is induced to be labile in the broader kinase family. We have demonstrated the direct role of the C8-H in the rate of ATP consumption, and the direct role played by conserved Thr residues interacting with the C8-H. The mechanism by which the vast range in KM might be achieved is also suggested by these findings.ResultsWe have demonstrated the mechanism by which the enzyme activities of Group 2 kinases, shikimate kinase (SK) and adenylate kinase 1 (AK1), are controlled by the C8-H of ATP. Mutations of the conserved threonine residues associated with the labile C8-H cause the enzymes to lose their saturation kinetics over the concentration range tested. The relationship between the role C8-H of ATP in the reaction mechanism and the ATP concentration as they influence the saturation kinetics of the enzyme activity is also shown. The SDM clearly identified the amino acid residues involved in both the catalysis and regulation of phosphoryl transfer in SK and AK1 as mediated by C8H-ATP.ConclusionsThe data outlined serves to demonstrate the “push” mechanism associated with the control of the saturation kinetics of Group 2 kinases mediated by ATP C8-H. It is therefore conceivable that kinase enzymes achieve the observed 2,500-fold variation in KM through a combination of the various conserved “push” and “pull” mechanisms associated with the release of C8-H, the proton transfer cascades unique to the class of kinase in question and the resultant/concomitant creation of a pentavalent species from the γ-phosphate group of ATP. Also demonstrated is the interplay between the role of the C8-H of ATP and the ATP concentration in the observed enzyme activity. The lability of the C8-H mediated by active site residues co-ordinated to the purine ring of ATP therefore plays a significant role in explaining the broad KM range associated with kinase steady state enzyme activities.
BMC Research Notes | 2012
Colin Peter Kenyon; Robyn Roth; Chris van der Westhuyzen; Christopher J. Parkinson
Archive | 2006
Colin Peter Kenyon; Lyndon Carey Oldfield; Der Westhuyzen Christiaan Wynand Van; Amanda Louise Rousseau; Christopher J. Parkinson
Archive | 2006
Colin Peter Kenyon; Lyndon Carey Oldfield
Archive | 2010
Robyn Roth; Colin Peter Kenyon