Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Colin V. Prescott is active.

Publication


Featured researches published by Colin V. Prescott.


International Journal of Pest Management | 2007

A standardised BCR resistance test for all anticoagulant rodenticides

Colin V. Prescott; Alan Buckle; Iftikhar Hussain; Stefan Endepols

Abstract This paper presents a reappraisal of the blood clotting response (BCR) tests for anticoagulant rodenticides, and proposes a standardised methodology for identifying and quantifying physiological resistance in populations of rodent species. The standardisation is based on the International Normalised Ratio, which is standardised against a WHO international reference preparation of thromboplastin, and allows comparison of data obtained using different thromboplastin reagents. The methodology is statistically sound, being based on the 50% response, and has been validated against the Norway rat (Rattus norvegicus) and the house mouse (Mus domesticus). Susceptibility baseline data are presented for warfarin, diphacinone, chlorophacinone and coumatetralyl against the Norway rat, and for bromadiolone, difenacoum, difethialone, flocoumafen and brodifacoum against the Norway rat and the house mouse. A ‘test dose’ of twice the ED50 can be used for initial identification of resistance, and will provide a similar level of information to previously published methods. Higher multiples of the ED50 can be used to assess the resistance factor, and to predict the likely impact on field control.


Crop Protection | 2000

Blood-clotting response tests for resistance to diphacinone and chlorophacinone in the Norway Rat (Rattus norvegicus Berk.)

Colin V. Prescott; Alan Buckle

Resistance baselines were obtained for the first generation anticoagulant rodenticides chlorophacinone and diphacinone using laboratory, caesarian-derived Norway rats (Rattus norvegicus) as the susceptible strain and the blood clotting response test method. The ED99 estimates for a quantal response were: chlorophacinone, males 0.86 mg kg−1, females 1.03 mg kg−1; diphacinone, males 1.26 mg kg−1, females 1.60 mg kg−1. The dose-response data also showed that chlorophacinone was significantly (p<0.0001) more potent than diphacinone for both male and female rats, and that male rats were more susceptible than females to both compounds (p<0.002). The ED99 doses were then given to groups of five male and five female rats of the Welsh and Hampshire warfarin-resistant strains. Twenty-four hours later, prothrombin times were slightly elevated in both strains but all the animals were classified as resistant to the two compounds, indicating cross-resistance from warfarin to diphacinone and chlorophacinone. When rats of the two resistant strains were fed for six consecutive days on baits containing either diphacinone or chlorophacinone, many animals survived, indicating that their resistance might enable them to survive treatments with these compounds in the field.


International Journal of Pest Management | 2007

The rodent species of the Ifugao Rice Terraces, Philippines – target or non-target species for management?

Alexander M. Stuart; Colin V. Prescott; Grant R. Singleton; Ravindra C. Joshi; Leocadio S. Sebastian

Abstract We investigated the species diversity and habitat use of rodents in the Ifugao Rice Terraces (IRT), Luzon, Philippines, as a first step in their assessment either as pest species of rice or as potential non-target species of rodent control practice. Trapping was carried out in caneland and forest habitats adjacent to rice cropland using trap lines of 10 – 15 cage-traps. Four trapping rounds, each consisting of 5 nights trapping, were replicated at two sites during the months of May and June. A diverse rodent fauna was recorded, including the non-native pest species, Rattus tanezumi, and the native species, Rattus everetti and Chrotomys mindorensis. Results from trapping and spool-and-line tracking suggested that these native species do not contribute to rice damage and that several may actually be beneficial in the ricefield ecosystem as vermivores that feed on invertebrate pests. Control should therefore be directed at the pest species, R. tanezumi, minimising non-target effects on the non-pest rodent species.


International Journal of Pest Management | 2007

Susceptibility to the anticoagulants bromadiolone and coumatetralyl in wild Norway rats (Rattus norvegicus) from the UK and Germany

Stefan Endepols; Colin V. Prescott; Nicole Klemann; Alan Buckle

Abstract A new blood clotting response test was used to determine the susceptibility, to coumatetralyl and bromadiolone, of laboratory strains of Norway rat from Germany and the UK (Hampshire), and wild rats trapped on farms in Wales (UK) and Westphalia (Germany). Resistance factors were calculated in relation to the CD strain of Norway rat. An outbred strain of wild rats, raised from rats trapped in Germany, was found to be more susceptible to coumatetralyl by a factor of 0.5 – 0.6 compared to the CD strain. Homozygous and heterozygous animals of a strain of resistant rats from Westphalia were cross-resistant to coumatetralyl and bromadiolone, with a higher resistance factor for bromadiolone than that found in both UK strains. Our results show that the degree of altered susceptibility and resistance varies between strains of wild rat and between resistance foci. Some wild rat strains may be more susceptible than laboratory rat strains. Even in a well-established resistance area, it may be difficult to find infestations with resistance high enough to suspect control problems with bromadiolone, even after decades of use of this compound.


International Journal of Pest Management | 2010

Effects of tamper-resistant bait boxes on bait uptake by Norway rats (Rattus norvegicus Berk.)

Alan Buckle; Colin V. Prescott

We compared the quantity of wheat bait consumed by Norway rats (Rattus norvegicus) from: (i) wooden bait trays, made as safe as possible from non-target animals using materials available at trial sites, and (ii) three different, proprietary tamper-resistant rat bait boxes. A balanced Latin square experimental design was used to overcome operational biases that occur when baits of different types are applied simultaneously at the same sites. The consumption of bait from the four different types of bait placement differed significantly and accounted for more than 76% of the total variation. The amount of bait eaten by rats from the bait trays was approximately eight times greater than the quantity eaten from the tamper-resistant bait boxes. The three bait box designs appeared to deter bait consumption by rats to a similar extent. Tamper-resistant bait boxes are essential tools in the application of rodenticides in many circumstances but their use should not be mandatory when it is possible to make baits safe from non-target animals by other means.


Pest Management Science | 2012

Brodifacoum is effective against Norway rats (Rattus norvegicus) in a tyrosine139cysteine focus of anticoagulant resistance in Westphalia, Germany.

Alan Buckle; Nicole Klemann; Colin V. Prescott

BACKGROUND The tyrosine to cysteine amino acid substitution at location 139 of the vkorc1 protein (i.e. tyrosine139cysteine or Y139C) is the most widespread anticoagulant resistance mutation in Norway rats (Rattus norvegicus Berk.) in Europe. Field trials were conducted to determine the incidence of the Y139C mutation at two rat-infested farms in Westphalia, Germany, and to estimate the practical efficacy against them of applications, using a pulsed baiting treatment regime, of a proprietary bait (Klerat™) containing 0.005% brodifacoum. RESULTS DNA analysis for the Y139C mutation showed that resistant rats were prevalent at the two farms, with an incidence of 80.0 and 78.6% respectively. Applications of brodifacoum bait achieved results of 99.2 and 100.0% control at the two farms, when measured by census baiting, although the treatment was somewhat prolonged at one site, possibly owing to the abundance of attractive alternative food. CONCLUSION The study showed that 0.005% brodifacoum bait is fully effective against Norway rats possessing the Y139C mutation at the Münsterland focus and is likely to be so elsewhere in Europe where this mutation is found. The pulsed baiting regime reduced to relatively low levels the quantity of bait required to control these two substantial resistant Norway rat infestations. Previous studies had shown much larger quantities of bromadiolone and difenacoum baits used in largely ineffective treatments against Y139C resistant rats in the Münsterland. These results should be considered when making decisions about the use of anticoagulants against resistant Norway rats and their potential environmental impacts.


International Journal of Pest Management | 2010

Anticoagulant resistance in Norway rats (Rattus norvegicus Berk.) in Kent – a VKORC1 single nucleotide polymorphism, tyrosine139phenylalanine, new to the UK

Colin V. Prescott; Alan Buckle; J. George Gibbings; Ed N.W. Allan; Alexander M. Stuart

A sample of 10 Norway rats (Rattus norvegicus) was taken for DNA resistance testing from an agricultural site in Kent where applications of the anticoagulant rodenticide bromadiolone had been unsuccessful. All animals tested were homozygous for the single nucleotide VKORC1 polymorphism tyrosine139phenylalanine, or Y139F. This is a common resistance mutation found extensively in France and Belgium but not previously in the UK. Y139F confers a significant level of resistance to first-generation anticoagulants, such as chlorophacinone, and to the second-generation compound bromadiolone. Another compound widely used in the UK, difenacoum, is also thought to be partially resisted by rats which carry Y139F. A silent VKORC1 mutation was also found in all rats tested. The presence of a third important VKORC1 mutation which confers resistance to anticoagulant rodenticides in widespread use in the UK, the others being Y139C and L120Q, further threatens the ability of pest control practitioners to deliver effective rodent control.


Wildlife Research | 2013

Natal nest locations of the Asian house rat (Rattus tanezumi) in lowland rice–coconut cropping systems: a coconut penthouse or rice bunds with water frontage?

Alexander M. Stuart; Colin V. Prescott; Grant R. Singleton

Abstract Context . Rattus tanezumi is a serious crop pest within the island of Luzon, Philippines. In intensive flood-irrigated rice field ecosystems of Luzon, female R. tanezumi are known to primarily nest within the tillers of ripening rice fields and along the banks of irrigation canals. The nesting habits of R. tanezumi in complex rice–coconut cropping systems are unknown. Aims . To identify the natal nest locations of R. tanezumi females in rice–coconut systems of the Sierra Madre Biodiversity Corridor (SMBC), Luzon, during the main breeding season to develop a management strategy that specifically targets their nesting habitat. Methods . When rice was at the booting to ripening stage, cage-traps were placed in rice fields adjacent to coconut habitat. Thirty breeding adult R. tanezumi females were fitted with radio-collars and successfully tracked to their nest sites. Key results . Most R. tanezumi nests (66.7%) were located in coconut groves, five nests (16.7%) were located in rice fields and five nests (16.7%) were located on the rice field edge. All nests were located above ground level and seven nests were located in coconut tree crowns. The median distance of nest sites to the nearest rice field was 22.5 m. Most nest site locations had good cover of ground vegetation and understorey vegetation, but low canopy cover. Only one nest location had an understorey vegetation height of less than 20 cm. Conclusions . In the coastal lowland rice–coconut cropping systems of the SMBC, female R. tanezumi showed a preference for nesting in adjacent coconut groves. This is contrary to previous studies in intensive flood-irrigated rice ecosystems of Luzon, where the species nests mainly in the banks of irrigation canals. It is important to understand rodent breeding ecology in a specific ecosystem before implementing appropriate management strategies. Implications . In lowland rice–coconut cropping systems, coconut groves adjacent to rice fields should be targeted for the management of R. tanezumi nest sites during the main breeding season as part of an integrated ecologically based approach to rodent pest management.


International Journal of Pest Management | 2007

Relationship between resistance factors and treatment efficacy when bromadiolone was used against anticoagulant-resistant Norway rats (Rattus norvegicus Berk.) in Wales

Alan Buckle; Stefan Endepols; Colin V. Prescott

Abstract We investigated the relationship between the severity and incidence of resistance among Norway rats (Rattus norvegicus) on a farm in Wales and the subsequent outcome of a practical rodent control operation. Bromadiolone resistance factors were estimated for rats trapped on the farm using the blood clotting response test, and were found to be 2 to 3 for male rats and approximately 6 for females. The incidence of resistance in the rat population was high. Infestation size was estimated by census baiting and tracking, and was found to be substantial, with a maximum of 6.5 kg of bait being eaten on a single night. A proprietary rodenticide (Deadline™), containing 0.005% bromadiolone, was used to control the infestation. The duration of baiting was 35 days and, according to the two methods of assessment used, treatment success was in the region of 87 and 93%. No evidence was observed of a significant impact of resistance on the rat control operation, and the remaining rats of this very heavy infestation would probably have been controlled if baiting had continued for longer.


Pest Management Science | 2014

Habitat manipulation in lowland rice - coconut cropping systems of the Philippines - an effective rodent pest management strategy?

Alexander M. Stuart; Colin V. Prescott; Grant R. Singleton

BACKGROUND Reduction of vegetation height is recommended as a management strategy for controlling rodent pests of rice in South-east Asia, but there are limited field data to assess its effectiveness. The breeding biology of the main pest species of rodent in the Philippines, Rattus tanezumi, suggests that habitat manipulation in irrigated rice-coconut cropping systems may be an effective strategy to limit the quality and availability of their nesting habitat. The authors imposed a replicated manipulation of vegetation cover in adjacent coconut groves during a single rice-cropping season, and added artificial nest sites to facilitate capture and culling of young. RESULTS Three trapping sessions in four rice fields (two treatments, two controls) adjacent to coconut groves led to the capture of 176 R. tanezumi, 12 Rattus exulans and seven Chrotomys mindorensis individuals. There was no significant difference in overall abundance between crop stages or between treatments, and there was no treatment effect on damage to tillers or rice yield. Only two R. tanezumi were caught at the artificial nest sites. CONCLUSION Habitat manipulation to reduce the quality of R. tanezumi nesting habitat adjacent to rice fields is not effective as a lone rodent management tool in rice-coconut cropping systems.

Collaboration


Dive into the Colin V. Prescott's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Grant R. Singleton

International Rice Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ravindra C. Joshi

Philippine Rice Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge