Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Colleen B. Mouw is active.

Publication


Featured researches published by Colleen B. Mouw.


Frontiers in Marine Science | 2017

A Consumer's Guide to Satellite Remote Sensing of Multiple Phytoplankton Groups in the Global Ocean

Colleen B. Mouw; Nick J. Hardman-Mountford; Séverine Alvain; Astrid Bracher; Robert J. W. Brewin; Annick Bricaud; Áurea Maria Ciotti; Emmanuel Devred; Amane Fujiwara; Takafumi Hirata; Toru Hirawake; Tihomir S. Kostadinov; Shovonlal Roy; Julia Uitz

Phytoplankton are composed of diverse taxonomical groups, which are manifested as distinct morphology, size and pigment composition. These characteristics, modulated by their physiological state, impact their light absorption and scattering, allowing them to be detected with ocean color satellite radiometry. There is a growing volume of literature describing satellite algorithms to retrieve information on phytoplankton composition in the ocean. This synthesis provides a review of current methods and a simplified comparison of approaches. The aim is to provide an easily comprehensible resource for non-algorithm developers, who desire to use these products, thereby raising the level of awareness and use of these products and reducing the boundary of expert knowledge needed to make a pragmatic selection of output products with confidence. The satellite input and output products, their associated validation metrics, as well as assumptions, strengths and limitations of the various algorithm types are described, providing a framework for algorithm organization to assist users and inspire new aspects of algorithm development capable of exploiting the higher spectral, spatial and temporal resolutions from the next generation of ocean color satellites.


Global Biogeochemical Cycles | 2016

Phytoplankton size impact on export flux in the global ocean

Colleen B. Mouw; Audrey Barnett; Galen A. McKinley; Lucas Gloege; Darren J. Pilcher

Efficiency of the biological pump of carbon to the deep ocean depends largely on biologically mediated export of carbon from the surface ocean and its remineralization with depth. Global satellite studies have primarily focused on chlorophyll concentration and net primary production (NPP) to understand the role of phytoplankton in these processes. Recent satellite retrievals of phytoplankton composition now allow for the size of phytoplankton cells to be considered. Here we improve understanding of phytoplankton size structure impacts on particle export, remineralization, and transfer. A global compilation of particulate organic carbon (POC) flux estimated from sediment traps and 234Th are utilized. Annual climatologies of NPP, percent microplankton, and POC flux at four time series locations and within biogeochemical provinces are constructed. Parameters that characterize POC flux versus depth (export flux ratio, labile fraction, and remineralization length scale) are fit for time series locations, biogeochemical provinces, and times of the year dominated by small and large phytoplankton cells where phytoplankton cell size show enough dynamic range over the annual cycle. Considering all data together, our findings support the idea of high export flux but low transfer efficiency in productive regions and vice versa for oligotrophic regions. However, when parsing by dominant size class, we find periods dominated by small cells to have both greater export flux efficiency and lower transfer efficiency than periods when large cells comprise a greater proportion of the phytoplankton community.


Ecological Applications | 2018

Satellite sensor requirements for monitoring essential biodiversity variables of coastal ecosystems

Frank E. Muller-Karger; Erin Hestir; Christiana Ade; Kevin R. Turpie; Dar A. Roberts; David A. Siegel; Robert Miller; David Carl Humm; Noam R. Izenberg; Mary R. Keller; Frank Morgan; Robert Frouin; Arnold G. Dekker; Royal C. Gardner; James Goodman; Blake A. Schaeffer; Bryan A. Franz; Nima Pahlevan; Antonio Mannino; Javier A. Concha; Steven G. Ackleson; Kyle C. Cavanaugh; Anastasia Romanou; Maria Tzortziou; Emmanuel Boss; Ryan Pavlick; Anthony Freeman; Cecile S. Rousseaux; John P. Dunne; Matthew C. Long

Abstract The biodiversity and high productivity of coastal terrestrial and aquatic habitats are the foundation for important benefits to human societies around the world. These globally distributed habitats need frequent and broad systematic assessments, but field surveys only cover a small fraction of these areas. Satellite‐based sensors can repeatedly record the visible and near‐infrared reflectance spectra that contain the absorption, scattering, and fluorescence signatures of functional phytoplankton groups, colored dissolved matter, and particulate matter near the surface ocean, and of biologically structured habitats (floating and emergent vegetation, benthic habitats like coral, seagrass, and algae). These measures can be incorporated into Essential Biodiversity Variables (EBVs), including the distribution, abundance, and traits of groups of species populations, and used to evaluate habitat fragmentation. However, current and planned satellites are not designed to observe the EBVs that change rapidly with extreme tides, salinity, temperatures, storms, pollution, or physical habitat destruction over scales relevant to human activity. Making these observations requires a new generation of satellite sensors able to sample with these combined characteristics: (1) spatial resolution on the order of 30 to 100‐m pixels or smaller; (2) spectral resolution on the order of 5 nm in the visible and 10 nm in the short‐wave infrared spectrum (or at least two or more bands at 1,030, 1,240, 1,630, 2,125, and/or 2,260 nm) for atmospheric correction and aquatic and vegetation assessments; (3) radiometric quality with signal to noise ratios (SNR) above 800 (relative to signal levels typical of the open ocean), 14‐bit digitization, absolute radiometric calibration <2%, relative calibration of 0.2%, polarization sensitivity <1%, high radiometric stability and linearity, and operations designed to minimize sunglint; and (4) temporal resolution of hours to days. We refer to these combined specifications as H4 imaging. Enabling H4 imaging is vital for the conservation and management of global biodiversity and ecosystem services, including food provisioning and water security. An agile satellite in a 3‐d repeat low‐Earth orbit could sample 30‐km swath images of several hundred coastal habitats daily. Nine H4 satellites would provide weekly coverage of global coastal zones. Such satellite constellations are now feasible and are used in various applications.


Frontiers in Marine Science | 2017

Bio-optical Properties of Cyanobacteria Blooms in Western Lake Erie

Timothy S. Moore; Colleen B. Mouw; James M. Sullivan; Michael S. Twardowski; Ashley M. Burtner; Audrey B. Ciochetto; Malcolm N. McFarland; Aditya R. Nayak; Danna Paladino; Nicole Stockley; Thomas H. Johengen; Angela W. Yu; Steve Ruberg; Alan Weidemann

There is a growing use of remote sensing observations for detecting and quantifying freshwater cyanobacteria populations, yet the inherent optical properties of these communities in natural settings, fundamental to bio-optical algorithms, are not well known. Towards bridging this knowledge gap, we measured a full complement of optical properties in western Lake Erie during cyanobacteria blooms in the summers of 2013 and 2014. Our measurements focus attention on the optical uniqueness of cyanobacteria blooms, which have consequences for remote sensing and bio-optical modeling. We found the cyanobacteria blooms in the western basin during our field work were dominated by Microcystis, while the waters in the adjacent central basin were dominated by Planktothrix. Chlorophyll concentrations ranged from 1 to over 135


Eos, Transactions American Geophysical Union | 2012

Inland and coastal waters

Colleen B. Mouw; Steven Greb

{\mu}g/L


GeoHealth | 2017

Quantification of Rotavirus Diarrheal Risk Due to Hydroclimatic Extremes Over South Asia: Prospects of Satellite‐Based Observations in Detecting Outbreaks

M. Alfi Hasan; Colleen B. Mouw; Antarpreet Jutla; Ali S. Akanda

across the study area with the highest concentrations associated with Microcystis in the western basin. We observed large, amorphous colonial Microcystis structures in the bloom area characterized by high phytoplankton absorption and high scattering coefficients with a mean particle backscatter ratio at 443nm greater than 0.03, which is higher than other plankton types and more comparable to suspended inorganic sediments. While our samples contained mixtures of both, our analysis suggests high contributions to the measured scatter and backscatter coefficients from cyanobacteria. Our measurements provide new insights into the optical properties of cyanobacteria blooms, and indicate that current semi-analytic models are likely to have problems resolving a closed solution in these types of waters as many of our observations are beyond the range of existing model components. We believe that different algorithm or model approaches are needed for these conditions, specifically for phytoplankton absorption and particle backscatter components. From a remote sensing perspective, this presents a challenge not only in terms of a need for new algorithms, but also for determining when to apply the best algorithm for a given situation. These results are new in the sense that they represent a complete description of the optical properties of freshwater cyanobacteria blooms, and are likely to be representative of bloom conditions for other systems containing Microcystis cells and colonies.


Remote Sensing of Environment | 2015

Aquatic color radiometry remote sensing of coastal and inland waters: Challenges and recommendations for future satellite missions

Colleen B. Mouw; Steven Greb; Dirk Aurin; Paul M. DiGiacomo; Zhongping Lee; Michael S. Twardowski; Caren E. Binding; Chuanmin Hu; Ronghua Ma; Timothy S. Moore; Wesley J. Moses; Susanne E. Craig

Workshop for Remote Sensing of Coastal and Inland Waters;Madison, Wisconsin, 20–22 June 2012 Coastal and inland water bodies, which have great value for recreation, food supply, commerce, transportation, and human health, have been experiencing external pressure from direct human activities and climate change. Given their societal and economic value, understanding issues of water quality, water quantity, and the impact of environmental change on the ecological and biogeochemical functioning of these water bodies is of interest to a broad range of communities. Remote sensing offers one of the most spatially and temporally comprehensive tools for observing these waters. While there has been some success with remotely observing these water bodies, many challenges still remain, including algorithm performance, atmospheric correction, the relationships between optical properties and biogeochemical parameters, sufficient spatial and spectral resolution, and a lack of uncertainty estimates over the wide range of environmental conditions encountered across these coastal and inland water bodies.


Journal of Geophysical Research | 2010

Optical determination of phytoplankton size composition from global SeaWiFS imagery

Colleen B. Mouw; James A. Yoder

Abstract Rotavirus is the most common cause of diarrheal disease among children under 5. Especially in South Asia, rotavirus remains the leading cause of mortality in children due to diarrhea. As climatic extremes and safe water availability significantly influence diarrheal disease impacts in human populations, hydroclimatic information can be a potential tool for disease preparedness. In this study, we conducted a multivariate temporal and spatial assessment of 34 climate indices calculated from ground and satellite Earth observations to examine the role of temperature and rainfall extremes on the seasonality of rotavirus transmission in Bangladesh. We extracted rainfall data from the Global Precipitation Measurement and temperature data from the Moderate Resolution Imaging Spectroradiometer sensors to validate the analyses and explore the potential of a satellite‐based seasonal forecasting model. Our analyses found that the number of rainy days and nighttime temperature range from 16°C to 21°C are particularly influential on the winter transmission cycle of rotavirus. The lower number of wet days with suitable cold temperatures for an extended time accelerates the onset and intensity of the outbreaks. Temporal analysis over Dhaka also suggested that water logging during monsoon precipitation influences rotavirus outbreaks during a summer transmission cycle. The proposed model shows lag components, which allowed us to forecast the disease outbreaks 1 to 2 months in advance. The satellite data‐driven forecasts also effectively captured the increased vulnerability of dry‐cold regions of the country, compared to the wet‐warm regions.


EPIC3(Reports of the International Ocean-Colour Coordinating Group (IOCCG) ; 15), Dartmouth, Nova Scotia, B2Y 4A2, Canada., International Ocean-Colour Coordinating Group, 156 p., pp. 1-156, ISBN: ISSN 1098-6030 | 2014

Phytoplankton functional types from Space.

Shubha Sathyendranath; Jim Aiken; Séverine Alvain; Ray Barlow; Heather Bouman; Astrid Bracher; Robert J. W. Brewin; Annick Bricaud; Chris W. Brown; Áurea Maria Ciotti; Lesley Clementson; Susanne E. Craig; Emmanuel Devred; Nick J. Hardman-Mountford; Takafumi Hirata; Chuanmin Hu; Tihomir S. Kostadinov; Samantha Lavender; Hubert Loisel; Timothy S. Moore; Morales Jesus; Cyril Moulin; Colleen B. Mouw; Anitha Nair; Dionysios E. Raitsos; Collin S. Roesler; Jamie D. Shutler; Heidi M. Sosik; Inia Soto; Venetia Stuart


Limnology and Oceanography | 2005

Primary production calculations in the Mid-Atlantic Bight, including effects of phytoplankton community size structure

Colleen B. Mouw; James A. Yoder

Collaboration


Dive into the Colleen B. Mouw's collaboration.

Top Co-Authors

Avatar

Galen A. McKinley

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Lucas Gloege

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Astrid Bracher

Alfred Wegener Institute for Polar and Marine Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Audrey Barnett

University of Rhode Island

View shared research outputs
Top Co-Authors

Avatar

Darren J. Pilcher

Pacific Marine Environmental Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge