Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Colleen T. Webb is active.

Publication


Featured researches published by Colleen T. Webb.


Ecology Letters | 2010

A structured and dynamic framework to advance traits‐based theory and prediction in ecology

Colleen T. Webb; Jennifer A. Hoeting; Gregory M. Ames; Matthew I. Pyne; N. LeRoy Poff

Predicting changes in community composition and ecosystem function in a rapidly changing world is a major research challenge in ecology. Traits-based approaches have elicited much recent interest, yet individual studies are not advancing a more general, predictive ecology. Significant progress will be facilitated by adopting a coherent theoretical framework comprised of three elements: an underlying trait distribution, a performance filter defining the fitness of traits in different environments, and a dynamic projection of the performance filter along some environmental gradient. This framework allows changes in the trait distribution and associated modifications to community composition or ecosystem function to be predicted across time or space. The structure and dynamics of the performance filter specify two key criteria by which we judge appropriate quantitative methods for testing traits-based hypotheses. Bayesian multilevel models, dynamical systems models and hybrid approaches meet both these criteria and have the potential to meaningfully advance traits-based ecology.


Proceedings of the Royal Society of London B: Biological Sciences | 2013

A comparison of bats and rodents as reservoirs of zoonotic viruses: are bats special?

Angela D. Luis; David T. S. Hayman; Thomas J. O'Shea; Paul M. Cryan; Amy T. Gilbert; Juliet R. C. Pulliam; James N. Mills; Mary E. Timonin; Craig K. R. Willis; Andrew A. Cunningham; Anthony R. Fooks; Charles E. Rupprecht; J. L. N. Wood; Colleen T. Webb

Bats are the natural reservoirs of a number of high-impact viral zoonoses. We present a quantitative analysis to address the hypothesis that bats are unique in their propensity to host zoonotic viruses based on a comparison with rodents, another important host order. We found that bats indeed host more zoonotic viruses per species than rodents, and we identified life-history and ecological factors that promote zoonotic viral richness. More zoonotic viruses are hosted by species whose distributions overlap with a greater number of other species in the same taxonomic order (sympatry). Specifically in bats, there was evidence for increased zoonotic viral richness in species with smaller litters (one young), greater longevity and more litters per year. Furthermore, our results point to a new hypothesis to explain in part why bats host more zoonotic viruses per species: the stronger effect of sympatry in bats and more viruses shared between bat species suggests that interspecific transmission is more prevalent among bats than among rodents. Although bats host more zoonotic viruses per species, the total number of zoonotic viruses identified in bats (61) was lower than in rodents (68), a result of there being approximately twice the number of rodent species as bat species. Therefore, rodents should still be a serious concern as reservoirs of emerging viruses. These findings shed light on disease emergence and perpetuation mechanisms and may help lead to a predictive framework for identifying future emerging infectious virus reservoirs.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Host and viral ecology determine bat rabies seasonality and maintenance

Dylan B. George; Colleen T. Webb; Matthew L. Farnsworth; Thomas J. O'Shea; Richard A. Bowen; David L. Smith; Thomas R. Stanley; Laura E. Ellison; Charles E. Rupprecht

Rabies is an acute viral infection that is typically fatal. Most rabies modeling has focused on disease dynamics and control within terrestrial mammals (e.g., raccoons and foxes). As such, rabies in bats has been largely neglected until recently. Because bats have been implicated as natural reservoirs for several emerging zoonotic viruses, including SARS-like corona viruses, henipaviruses, and lyssaviruses, understanding how pathogens are maintained within a population becomes vital. Unfortunately, little is known about maintenance mechanisms for any pathogen in bat populations. We present a mathematical model parameterized with unique data from an extensive study of rabies in a Colorado population of big brown bats (Eptesicus fuscus) to elucidate general maintenance mechanisms. We propose that life history patterns of many species of temperate-zone bats, coupled with sufficiently long incubation periods, allows for rabies virus maintenance. Seasonal variability in bat mortality rates, specifically low mortality during hibernation, allows long-term bat population viability. Within viable bat populations, sufficiently long incubation periods allow enough infected individuals to enter hibernation and survive until the following year, and hence avoid an epizootic fadeout of rabies virus. We hypothesize that the slowing effects of hibernation on metabolic and viral activity maintains infected individuals and their pathogens until susceptibles from the annual birth pulse become infected and continue the cycle. This research provides a context to explore similar host ecology and viral dynamics that may explain seasonal patterns and maintenance of other bat-borne diseases.


Zoonoses and Public Health | 2013

Ecology of Zoonotic Infectious Diseases in Bats: Current Knowledge and Future Directions

David T. S. Hayman; Richard A. Bowen; Paul M. Cryan; Gary F. McCracken; Thomas J. O'Shea; Alison J. Peel; Amy T. Gilbert; Colleen T. Webb; J. L. N. Wood

Bats are hosts to a range of zoonotic and potentially zoonotic pathogens. Human activities that increase exposure to bats will likely increase the opportunity for infections to spill over in the future. Ecological drivers of pathogen spillover and emergence in novel hosts, including humans, involve a complex mixture of processes, and understanding these complexities may aid in predicting spillover. In particular, only once the pathogen and host ecologies are known can the impacts of anthropogenic changes be fully appreciated. Cross‐disciplinary approaches are required to understand how host and pathogen ecology interact. Bats differ from other sylvatic disease reservoirs because of their unique and diverse lifestyles, including their ability to fly, often highly gregarious social structures, long lifespans and low fecundity rates. We highlight how these traits may affect infection dynamics and how both host and pathogen traits may interact to affect infection dynamics. We identify key questions relating to the ecology of infectious diseases in bats and propose that a combination of field and laboratory studies are needed to create data‐driven mechanistic models to elucidate those aspects of bat ecology that are most critical to the dynamics of emerging bat viruses. If commonalities can be found, then predicting the dynamics of newly emerging diseases may be possible. This modelling approach will be particularly important in scenarios when population surveillance data are unavailable and when it is unclear which aspects of host ecology are driving infection dynamics.


PLOS ONE | 2011

Programmable Ligand Detection System in Plants through a Synthetic Signal Transduction Pathway

Mauricio S. Antunes; Kevin J. Morey; Jeff Smith; Kirk D. Albrecht; Tessa A. Bowen; Jeffrey K. Zdunek; Jared F. Troupe; Matthew J. Cuneo; Colleen T. Webb; Homme W. Hellinga; June I. Medford

Background There is an unmet need to monitor human and natural environments for substances that are intentionally or unintentionally introduced. A long-sought goal is to adapt plants to sense and respond to specific substances for use as environmental monitors. Computationally re-designed periplasmic binding proteins (PBPs) provide a means to design highly sensitive and specific ligand sensing capabilities in receptors. Input from these proteins can be linked to gene expression through histidine kinase (HK) mediated signaling. Components of HK signaling systems are evolutionarily conserved between bacteria and plants. We previously reported that in response to cytokinin-mediated HK activation in plants, the bacterial response regulator PhoB translocates to the nucleus and activates transcription. Also, we previously described a plant visual response system, the de-greening circuit, a threshold sensitive reporter system that produces a visual response which is remotely detectable and quantifiable. Methodology/Principal Findings We describe assembly and function of a complete synthetic signal transduction pathway in plants that links input from computationally re-designed PBPs to a visual response. To sense extracellular ligands, we targeted the computational re-designed PBPs to the apoplast. PBPs bind the ligand and develop affinity for the extracellular domain of a chemotactic protein, Trg. We experimentally developed Trg fusions proteins, which bind the ligand-PBP complex, and activate intracellular PhoR, the HK cognate of PhoB. We then adapted Trg-PhoR fusions for function in plants showing that in the presence of an external ligand PhoB translocates to the nucleus and activates transcription. We linked this input to the de-greening circuit creating a detector plant. Conclusions/Significance Our system is modular and PBPs can theoretically be designed to bind most small molecules. Hence our system, with improvements, may allow plants to serve as a simple and inexpensive means to monitor human surroundings for substances such as pollutants, explosives, or chemical agents.


Ecology Letters | 2012

Model-guided fieldwork: practical guidelines for multidisciplinary research on wildlife ecological and epidemiological dynamics

Olivier Restif; David T. S. Hayman; Juliet R. C. Pulliam; Raina K. Plowright; Dylan B. George; Angela D. Luis; Andrew A. Cunningham; Richard A. Bowen; Anthony R. Fooks; Thomas J. O'Shea; J. L. N. Wood; Colleen T. Webb

Infectious disease ecology has recently raised its public profile beyond the scientific community due to the major threats that wildlife infections pose to biological conservation, animal welfare, human health and food security. As we start unravelling the full extent of emerging infectious diseases, there is an urgent need to facilitate multidisciplinary research in this area. Even though research in ecology has always had a strong theoretical component, cultural and technical hurdles often hamper direct collaboration between theoreticians and empiricists. Building upon our collective experience of multidisciplinary research and teaching in this area, we propose practical guidelines to help with effective integration among mathematical modelling, fieldwork and laboratory work. Modelling tools can be used at all steps of a field-based research programme, from the formulation of working hypotheses to field study design and data analysis. We illustrate our model-guided fieldwork framework with two case studies we have been conducting on wildlife infectious diseases: plague transmission in prairie dogs and lyssavirus dynamics in American and African bats. These demonstrate that mechanistic models, if properly integrated in research programmes, can provide a framework for holistic approaches to complex biological systems.


Proceedings of the Royal Society of London B: Biological Sciences | 2011

Using network properties to predict disease dynamics on human contact networks.

Gregory M. Ames; Dylan B. George; Christian P. Hampson; Andrew R. Kanarek; Cayla D. McBee; Dale R. Lockwood; Jeffrey D. Achter; Colleen T. Webb

Recent studies have increasingly turned to graph theory to model more realistic contact structures that characterize disease spread. Because of the computational demands of these methods, many researchers have sought to use measures of network structure to modify analytically tractable differential equation models. Several of these studies have focused on the degree distribution of the contact network as the basis for their modifications. We show that although degree distribution is sufficient to predict disease behaviour on very sparse or very dense human contact networks, for intermediate density networks we must include information on clustering and path length to accurately predict disease behaviour. Using these three metrics, we were able to explain more than 98 per cent of the variation in endemic disease levels in our stochastic simulations.


Evolutionary Applications | 2010

Allee effects, adaptive evolution, and invasion success

Andrew R. Kanarek; Colleen T. Webb

The mechanisms that facilitate success of an invasive species include both ecological and evolutionary processes. Investigating the evolutionary dynamics of founder populations can enhance our understanding of patterns of invasiveness and provide insight into management strategies for controlling further establishment of introduced populations. Our aim is to analyze the evolutionary consequences of ecological processes (i.e., propagule pressure and threshold density effects) that impact successful colonization. We address our questions using a spatially‐explicit modeling approach that incorporates dispersal, density dependent population growth, and selection. Our results show that adaptive evolution may occur in small or sparse populations, providing a means of mitigating or avoiding inverse density dependent effects (i.e., Allee effects). The rate at which this adaptation occurs is proportional to the amount of genetic variance and is a crucial component in assessing whether natural selection can rescue a population from extinction. We provide theoretical evidence for the importance of recognizing evolution in predicting and explaining successful biological invasions.


Influenza and Other Respiratory Viruses | 2013

Multiannual patterns of influenza A transmission in Chinese live bird market systems.

Kim M. Pepin; Jia Wang; Colleen T. Webb; Gavin J. D. Smith; Mary Poss; Peter J. Hudson; Wenshan Hong; Huachen Zhu; Steven Riley; Yi Guan

Please cite this paper as: Pepin et al. (2012) Multiannual patterns of influenza A transmission in Chinese live bird market systems. Influenza and Other Respiratory Viruses DOI: 10.1111/j.1750‐2659.2012.00354.x.


Molecular Systems Biology | 2009

Engineering key components in a synthetic eukaryotic signal transduction pathway

Mauricio S. Antunes; Kevin J. Morey; Neera Tewari-Singh; Tessa A. Bowen; Jeff Smith; Colleen T. Webb; Homme W. Hellinga; June I. Medford

Signal transduction underlies how living organisms detect and respond to stimuli. A goal of synthetic biology is to rewire natural signal transduction systems. Bacteria, yeast, and plants sense environmental aspects through conserved histidine kinase (HK) signal transduction systems. HK protein components are typically comprised of multiple, relatively modular, and conserved domains. Phosphate transfer between these components may exhibit considerable cross talk between the otherwise apparently linear pathways, thereby establishing networks that integrate multiple signals. We show that sequence conservation and cross talk can extend across kingdoms and can be exploited to produce a synthetic plant signal transduction system. In response to HK cross talk, heterologously expressed bacterial response regulators, PhoB and OmpR, translocate to the nucleus on HK activation. Using this discovery, combined with modification of PhoB (PhoB‐VP64), we produced a key component of a eukaryotic synthetic signal transduction pathway. In response to exogenous cytokinin, PhoB‐VP64 translocates to the nucleus, binds a synthetic PlantPho promoter, and activates gene expression. These results show that conserved‐signaling components can be used across kingdoms and adapted to produce synthetic eukaryotic signal transduction pathways.

Collaboration


Dive into the Colleen T. Webb's collaboration.

Top Co-Authors

Avatar

Ryan S. Miller

Animal and Plant Health Inspection Service

View shared research outputs
Top Co-Authors

Avatar

Kim M. Pepin

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel A. Grear

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew R. Kanarek

National Institute for Mathematical and Biological Synthesis

View shared research outputs
Top Co-Authors

Avatar

Katie Portacci

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Mark P. Simmons

Colorado State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge