Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Collin G. Joseph is active.

Publication


Featured researches published by Collin G. Joseph.


Ultrasonics Sonochemistry | 2009

Sonophotocatalysis in advanced oxidation process: A short review

Collin G. Joseph; Gianluca Li Puma; Awang Bono; Duduku Krishnaiah

Sonophotocatalysis involves the use of a combination of ultrasonic sound waves, ultraviolet radiation and a semiconductor photocatalyst to enhance a chemical reaction by the formation of free radicals in aqueous systems. Researchers have used sonophotocatalysis in a variety of investigations i.e. from water decontamination to direct pollutant degradation. This degradation process provides an excellent opportunity to reduce reaction time and the amount of reagents used without the need for extreme physical conditions. Given its advantages, the sonophotocatalysis process has a futuristic application from an engineering and fundamental aspect in commercial applications. A detailed search of published reports was done and analyzed in this paper with respect to sonication, photocatalysis and advanced oxidation processes.


Water Science and Technology | 2015

Parametric and adsorption kinetic studies of methylene blue removal from simulated textile water using durian (Durio zibethinus murray) skin

S. M. Anisuzzaman; Collin G. Joseph; Duduku Krishnaiah; Awang Bono; L. C. Ooi

In this study, durian (Durio zibethinus Murray) skin was examined for its ability to remove methylene blue (MB) dye from simulated textile wastewater. Adsorption equilibrium and kinetics of MB removal from aqueous solutions at different parametric conditions such as different initial concentrations (2-10 mg/L), biosorbent dosages (0.3-0.7 g) and pH solution (4-9) onto durian skin were studied using batch adsorption. The amount of MB adsorbed increased from 3.45 to 17.31 mg/g with the increase in initial concentration of MB dye; whereas biosorbent dosage increased from 1.08 to 2.47 mg/g. Maximum dye adsorption capacity of the durian skin was found to increase from 3.78 to 6.40 mg/g, with increasing solution pH. Equilibrium isotherm data were analyzed according to Langmuir and Freundlich isotherm models. The sorption equilibrium was best described by the Freundlich isotherm model with maximum adsorption capacity of 7.23 mg/g and this was due to the heterogeneous nature of the durian skin surface. Kinetic studies indicated that the sorption of MB dye tended to follow the pseudo second-order kinetic model with promising correlation of 0.9836 < R(2) < 0.9918.


Korean Journal of Chemical Engineering | 2017

Removal of chlorinated phenol from aqueous solution utilizing activated carbon derived from papaya (carica papaya) seeds

Duduku Krishnaiah; Collin G. Joseph; S. M. Anisuzzaman; Wan Mohd Ashri Wan Daud; Murni Sundang; Y. C. Leow

Activated carbons (ACs) were prepared from papaya seeds with different dry weight impregnation ratios of zinc chloride (ZnCl2) to papaya seeds by using a two-stage self-generated atmosphere method. The papaya seeds were first semi-carbonized in a muffle furnace at 300 °C for 1 h and then impregnated with ZnCl2 before activation at 500 °C for 2 h. Several physical and chemical characteristics such as moisture, ash, pH, functional groups, morphological structure and porosity of prepared ACs were studied and presented here. AC2, with the impregnation ration of 1: 2 (papaya seeds: ZnCl2), yielded a product that had the highest adsorption capacity, 91.75%, achieved after 180min contact time. The maximum Brunauer, Emmett and Teller (BET) surface area of AC2 was 546m2/g. Adsorption studies indicated that AC2 complied well with the Langmuir isotherm (qm=39.683mg g−1) and the pseudo-second-order (qe=29.36mg g−1). This indicated that chemisorption was the primary adsorption method for AC2. The intraparticle diffusion model proved that the mechanism of adsorption was separated into two stages: the instantaneous stage and the gradual adsorption stage. Overall, this work demonstrated the suitability of using papaya seeds as a precursor to manufacture activated carbon.


IOP Conference Series: Earth and Environmental Science | 2016

A review on palm oil mill biogas plant wastewater treatment using coagulation-ozonation

Z D Dexter; Collin G. Joseph; A.Y. Zahrim

Palm oil mill effluent (POME) generated from the palm oil industry is highly polluted and requires urgent attention for treatment due to its high organic content. Biogas plant containing anaerobic digester is capable to treat the high organic content of the POME while generating valuable biogas at the same time. This green energy from POME is environmental-friendly but the wastewater produced is still highly polluted and blackish in colour. Therefore a novel concept of combining coagulation with ozonation treatment is proposed to treat pollution of this nature. Several parameters should be taken under consideration in order to ensure the effectiveness of the hybrid treatment including ozone dosage, ozone contact time, pH of the water or wastewater, coagulant dosage, and mixing and settling time. This review paper will elucidate the importance of hybrid coagulation-ozonation treatment in producing a clear treated wastewater which is known as the main challenge in palm oil industry


Chemical Engineering Communications | 2015

Sonolysis, Photolysis, and Sequential Sonophotolysis for the Degradation of 2,4,6-Trichlorophenol: The Effect of Solution Concentration

Collin G. Joseph; Gianluca Li Puma; Awang Bono; Yun Hin Taufiq-Yap; Duduku Krishnaiah

Ultrasonic sound waves, ultraviolet-A irradiation, and a combination of these two techniques were applied to a non-catalytic aqueous system containing 2,4,6-trichlorophenol (TCP) to study the effectiveness of sonolytic, photolytic, and sonophotolytic oxidation processes for the degradation of TCP. The operating parameters for the horn-type sonicator and the UV-A lamp were kept constant along with the solution temperature, but the TCP concentration was varied from 30 to 90 ppm. A first-order kinetic rate model was used to study the synergistic effect of the sonophotodegradation process. It was found that at a lower TCP concentration of 30 ppm, sonophotodegradation exhibited a synergistic effect, but at a TCP concentration of 70 ppm and higher, sonophotodegradation resulted in an antagonistic effect. The synergistic effect was explained in terms of an increase in the •OH radical formation by the combined process complemented by the photolysis of H2O2 formed by sonolysis. In contrast, the antagonistic effect was explained in terms of the combined effect of viscosity increase resulting in the reduction of the cavitation efficiency and degradation rate, and by considering the dynamics of bubble growth and implosion.


Archive | 2013

Preparation and Characterization of Activated Carbon Derived from Waste Rubber Tire via Chemical Activation with ZnCl2: Surface Area and Morphological Studies

Collin G. Joseph; G. G. Hoon; Y. L. Sharain-Liew; D. Krishnaiah; M. Massuanna

Turning waste to wealth is an important aspect in promoting green technology. In this study, activated carbon from waste rubber tire was prepared using chemical activation (ZnCl2) by way of a two-stage activation in self-generated atmosphere method. The preparation parameters examined and compared in this study were activation time, activation temperature, and impregnation ratio. The adsorption of the target pollutant, 2,4-dichlorophenol (DCP), was used to evaluate the efficiency of adsorption capacity of the prepared activated carbon. Results from the experimental work showed that the activated carbon prepared satisfied the Freundlich isotherm and complied with the pseudo-second-order kinetics (not presented here). Other parameters studied, such as the percentage yield of activated carbon, ash, and moisture content and the morphology structure, are presented in this chapter. This study showed that waste rubber tire dehydrated with ZnCl2 with an impregnation ratio of 1:1 and activated at a temperature of 500 °C for 120 min gave the best result (AC5).


bioRxiv | 2018

Comparative Genomic Analysis of Bacillus thuringiensis Reveals Molecular Adaptation to Copper Tolerance

Yi Yik Low; Grace Joy Wei Lie Chin; Collin G. Joseph; Kenneth Francis Rodrigues

Bacillus thuringiensis is a type of Gram positive and rod shaped bacterium that is found in a wide range of habitats. Despite the intensive studies conducted on this bacterium, most of the information available are related to its pathogenic characteristics, with only a limited number of publications mentioning its ability to survive in extreme environments. Recently, a B. thuringiensis MCMY1 strain was successfully isolated from a copper contaminated site in Mamut Copper Mine, Sabah. This study aimed to conduct a comparative genomic analysis by using the genome sequence of MCMY1 strain published in GenBank (PRJNA374601) as a target genome for comparison with other available B. thuringiensis genomes at the GenBank. Whole genome alignment, Fragment all-against-all comparison analysis, phylogenetic reconstruction and specific copper genes comparison were applied to all forty-five B. thuringiensis genomes to reveal the molecular adaptation to copper tolerance. The comparative results indicated that B. thuringiensis MCMY1 strain is closely related to strain Bt407 and strain IS5056. This strain harbors almost all available copper genes annotated from the forty-five B. thuringiensis genomes, except for the gene for Magnesium and cobalt efflux protein (CorC) which plays an indirect role in reducing the oxidative stress that caused by copper and other metal ions. Furthermore, the findings also showed that the Copper resistance gene family, CopABCDZ and its repressor (CsoR) are conserved in almost all sequenced genomes but the presence of the genes for Cytoplasmic copper homeostasis protein (CutC) and CorC across the sample genomes are highly inconsonant. The variation of these genes across the B. thuringiensis genomes suggests that each strain may have adapted to their specific ecological niche. However, further investigations will be need to support this preliminary hypothesis.


IOP Conference Series: Materials Science and Engineering | 2017

Removal of Methylene Blue Dye from Aqueous Solution Using a Newly Synthesized TiO2-SiO2 Photocatalyst in the Presence of Active Chlorine Species

Collin G. Joseph; L Elilarasi

Industrialization and urbanization demand high amount of water consumption, which contributes to their polluted condition. Thus, there is a need to develop a sustainable wastewater remediation technique in order to provide sustainable use of clean water for future generations without ramifications to the economic sectors. The newly synthesized TiO2-SiO2 photocatalyst was used to remediate Methylene Blue contaminated aqueous solution in the presence of active chlorine species. The doping of SiO2 into TiO2 enhanced the removal rate of Methylene Blue dye from the solution by increasing the surface area, thermal stability and surface acidity of the TiO2. The active chlorine species further enhanced the removal rate of Methylene Blue dye from the solution by contributing more reactive species, chlorine radicals, which broke down the dye molecules. The experiments were conducted via Taguchi analysis. The findings show that combining TiO2, SiO2 and active chlorine species enhanced the removal percentage of Methylene Blue dye compared to using TiO2 alone by 70%. About 70% of 50ppm Methylene Blue was degraded by 1 g of TiO2-SiO2 in the presence of 0.3 ppm Ca(OCl)2 under 9 Watts solar irradiation within 3 hours. The enhanced dye removal method brings photocatalysis a step closer to sustainable wastewater remediation methods.


IOP Conference Series: Materials Science and Engineering | 2017

Physical Activation of Oil Palm Empty Fruit Bunch via CO2 Activation Gas for CO2 Adsorption

Collin G. Joseph; Kye Shane Quek; Wan Mohd Ashri Wan Daud; Pak Yan Moh

In this study, different parameters for the preparation of activated carbon were investigated for their yield and CO2 capture capabilities. The activated carbon was prepared from Oil Palm Empty Fruit Bunch (OPEFB) via a 2-step physical activation process. The OPEFB was pyrolyzed under inert conditions at 500 °C and activated via CO2. A 2-factorial design was employed and the effects of activation temperature, activation dwell time and gas flow rate on yield and CO2 capture capabilities were compared and studied. The yield obtained ranged from between 20 – 26, whereby the temperature was determined to be the most significant factor in influencing CO2 uptake. The CO2 capture capacity was determined using Temperature Programmed Desorption (TPD) technique. The CO2 uptake of EFB activated carbon achieved was between 1.85 – 2.09 mmol/g. TPD analysis has shown that the surface of AC were of basic nature. AC was found to be able to withhold the CO2 up to 663°C before maximum desorption occurs. The surface area and pore size of OPEFB obtained from BET analysis is 2.17 m2 g-1 and 0.01 cm3 g-1. After activation, both surface area and pore size increased with a maximum observed surface area and pore size of 548.07 m2 g-1 and 0.26 cm3 g-1. Surface morphology, functional groups, pore size and surface area were analyzed using SEM, FT-IR, TPD and BET.


IOP Conference Series: Materials Science and Engineering | 2017

Chlorinated phenol removal from aqueous media by tea (Camellia sinensis) leaf waste tailored activated carbon

Collin G. Joseph; S. M. Anisuzzaman; Wan Mohd Ashri Wan Daud; Duduku Krishnaiah; K A Ng

In this study, activated carbons (ACs) wereprepared from tea leaves by using a two-stage self-generated atmosphere method. The process was done by semi-carbonizing the precursor at 300 °C for 1 h, followed by the impregnation of the resulting char at 85 °C for 4 h and finally activation at 500 °C for 2 h. The semi-carbonised samples were impregnated with different ratios of zinc chloride (ZnCl2) and their physicochemical effect was studied. The prepared ACs underwent several aspects of both, chemical and physical characterizations, such as the percentage of yield, moisture content, ash content, pH, porosity, adsorption capacity of 2,4-dichlorophenol (2,4-DCP), surface area, porosity, morphology and surface chemistry studies. It was found that sample AC2, with an impregnation ratio of 2:1 was the best AC produced in this study. The maximum Brunauer, Emmett and Teller surface area of AC2 was found to be 695 m2/g. Langmuir, Freundlich and Temkin isotherm models were used to examine the experimental isotherms while the kinetic data was analyzed using the pseudo-first-order, pseudo-second-order and intraparticle diffusion kinetic models. The 2,4-DCP adsorption isotherm results complied well to the Langmuir isotherm for the equilibrium data while the adsorption kinetic data fitted well to the pseudo-second order model, indicating that chemisorption by valency forces via the sharing (covalent bond) or exchanging of electrons between the AC and the 2,4-DCP molecules were mainly responsible for the adsorption process. From these findings, it is concluded that tea leaves can be used as a low cost precursor for the removal of 2,4-DCP in aqueous medium.

Collaboration


Dive into the Collin G. Joseph's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Awang Bono

Universiti Malaysia Sabah

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kye Shane Quek

Universiti Malaysia Sabah

View shared research outputs
Top Co-Authors

Avatar

Sariah Abang

Universiti Malaysia Sabah

View shared research outputs
Top Co-Authors

Avatar

A.Y. Zahrim

Universiti Malaysia Sabah

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge