Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Colm Bracken is active.

Publication


Featured researches published by Colm Bracken.


Fourier Transform Spectroscopy and Hyperspectral Imaging and Sounding of the Environment (2015), paper FT4A.3 | 2015

Progress in the critical assessment for a far-infrared space interferometer with double fourier modulation (FP7-FISICA)

G. Savini; P. A. R. Ade; Nicola Baccichet; Colm Bracken; K. Dohlenh; A. Donohoe; Bradley G. Gom; Matthew Joseph Griffin; W. S. Holland; V. Iafolla; R. J. Ivison; Martyn Jones; Roser Juanola-Parramon; John F. Lightfoot; S. Liu; Alison McMillan; J. A. Murphy; David A. Naylor; Créidhe M. O'Sullivan; Enzo Pascale; S. Pezzutto; Eddy Rakotonimbahy; D. Schito; L. D. Spencer; L. Spinoglio; B. M. Swinyard; I. Venendaal; S. Vives; David D. Walker; David T. Leisawitz

The progress and results of the ongoing FP7-FISICA programme to re-asses the scientific goals of a Far-Infrared Space Interfereometer and push the development of some of its key technology elements are reported.


Proceedings of SPIE | 2012

Optical modeling of waveguide coupled TES detectors towards the SAFARI instrument for SPICA

Neil Trappe; Colm Bracken; Stephen Doherty; J. R. Gao; D. M. Glowacka; D. J. Goldie; Douglas Griffin; R. A. Hijmering; B. D. Jackson; P. Khosropanah; P. Mauskopf; Dmitry Morozov; A. Murphy; Créidhe M. O'Sullivan; M. Ridder; Stafford Withington

The next generation of space missions targeting far-infrared wavelengths will require large-format arrays of extremely sensitive detectors. The development of Transition Edge Sensor (TES) array technology is being developed for future Far-Infrared (FIR) space applications such as the SAFARI instrument for SPICA where low-noise and high sensitivity is required to achieve ambitious science goals. In this paper we describe a modal analysis of multi-moded horn antennas feeding integrating cavities housing TES detectors with superconducting film absorbers. In high sensitivity TES detector technology the ability to control the electromagnetic and thermo-mechanical environment of the detector is critical. Simulating and understanding optical behaviour of such detectors at far IR wavelengths is difficult and requires development of existing analysis tools. The proposed modal approach offers a computationally efficient technique to describe the partial coherent response of the full pixel in terms of optical efficiency and power leakage between pixels. Initial wok carried out as part of an ESA technical research project on optical analysis is described and a prototype SAFARI pixel design is analyzed where the optical coupling between the incoming field and the pixel containing horn, cavity with an air gap, and thin absorber layer are all included in the model to allow a comprehensive optical characterization. The modal approach described is based on the mode matching technique where the horn and cavity are described in the traditional way while a technique to include the absorber was developed. Radiation leakage between pixels is also included making this a powerful analysis tool.


Proceedings of SPIE | 2014

Efficient algorithms for optimising the optical performance of profiled smooth walled horns for future CMB and Far-IR missions

Darragh McCarthy; Neil Trappe; J. Anthony Murphy; Créidhe M. O'Sullivan; Marcin Gradziel; Stephen Doherty; Colm Bracken; Niall Tynan; Arturo Polegre; Peter G. Huggard

Astronomical observations in the far-infrared are critical for investigation of cosmic microwave background (CMB) radiation and the formation and evolution of planets, stars and galaxies. In the case of space telescope receivers, a strong heritage exists for corrugated horn antenna feeds to couple the far-infrared signals to the detectors mounted in a waveguide or cavity structure. Such antenna feeds have been utilized, for example, in the Planck satellite in both single-mode channels for the observation of the CMB and the multi-mode channels optimized for the detection of foreground sources. Looking to the demands of the future space missions, it is clear that the development of new technology solutions for the optimization and simplification of horn antenna structures will be required for large arrays. Horn antennas will continue to offer excellent control of beam and polarization properties for CMB polarisation experiments satisfying stringent requirements on low sidelobe levels, symmetry, and low cross polarization in large arrays. Similarly for far infrared systems, multi-mode horn and waveguide cavity structures are proposed to enhance optical coupling of weak signals for cavity coupled bolometers. In this paper we present a computationally efficient approach for modelling and optimising horn character-istics. We investigate smooth-walled horns that have an equivalent optical performance to that of corrugated horns traditionally used for CMB measurements. We discuss the horn optimisation process and the algorithms available to maximise performance of a merit parameter such as low cross polarisation or high Gaussicity. A single moded horn resulting from this design process has been constructed and experimentally verified in the W band. The results of the measurement campaign are presented in this paper and compared to the simulated results, showing a high level of agreement in co and cross polarisation radiation patterns, with low levels of integrated cross polar power. For future Far IR receivers using waveguide bounded bolometers and absorbers, an optimisation of the waveg-uide structures and absorber location within the integrating cavity is critical to maximise coupling performance particularly for multimoded systems. We outline the benefit of using multi-moded horns in focal plane arrays and illustrate the increased optical sensitivity associated with a many-moded approach, which may be optimized for coupling to particular incident beams.


Proceedings of SPIE | 2015

Optical and quasi-optical analysis of system components for a far-infrared space interferometer

Colm Bracken; Créidhe M. O'Sullivan; A. Donohoe; A. Murphy; G. Savini; Roser Juanola-Parramon; Nicola Baccichet; A. Guisseau; Peter A. R. Ade; Enzo Pascale; L. D. Spencer; Ian Kenneth Walker; Kjetil Dohlen; John F. Lightfoot; W. Holland; Martyn Jones; David D. Walker; Alison McMillan

Many important astrophysical processes occur at wavelengths that fall within the far-infrared band of the EM spectrum, and over distance scales that require sub-arc second spatial resolution. It is clear that in order to achieve sub-arc second resolution at these relatively long wavelengths (compared to optical/near-IR), which are strongly absorbed by the atmosphere, a space-based far-IR interferometer will be required. We present analysis of the optical system for a proposed spatial-spectral interferometer, discussing the challenges that arise when designing such a system and the simulation techniques employed that aim to resolve these issues. Many of these specific challenges relate to combining the beams from multiple telescopes where the wavelengths involved are relatively short (compared to radio interferometry), meaning that care must be taken with mirror surface quality, where surface form errors not only present potential degradation of the single system beams, but also serve to reduce fringe visibility when multiple telescope beams are combined. Also, the long baselines required for sub-arc second resolution present challenges when considering propagation of the relatively long wavelengths of the signal beam, where beam divergence becomes significant if the beam demagnification of the telescopes is not carefully considered. Furthermore, detection of the extremely weak far-IR signals demands ultra-sensitive detectors and instruments capable of operating at maximum efficiency. Thus, as will be shown, care must be taken when designing each component of such a complex quasioptical system.


Proceedings of SPIE | 2013

Efficient horn antennas for next-generation terahertz and millimeter-wave space telescopes

Darragh McCarthy; Neil Trappe; A. Murphy; Colm Bracken; Stephen Doherty; Marcin Gradziel; Créidhe M. O'Sullivan

Astronomical observations in the far-infrared are critical for investigation of cosmic microwave background (CMB) radiation and the formation and evolution of planets, stars and galaxies. In the case of space telescope receivers a strong heritage exists for corrugated horn antenna feeds to couple the far-infrared signals to the detectors mounted in a waveguide or cavity structure. Such antenna feeds have been utilized, for example, in the Planck satellite in both single-mode channels for the observation of the CMB and the multi-mode channels optimized for the detection of foreground sources. Looking to the demands of the future space missions, it is clear that the development of new technology solutions for the optimization and simplification of horn antenna structures will be required for large arrays. Horn antennas will continue to offer excellent control of beam and polarization properties for CMB polarisation experiments satisfying stringent requirements on low sidelobe levels, symmetry and low cross polarization in large arrays. Similarly for mid infrared systems multi-mode waveguide structures will give high throughput to reach the required sensitivities. In this paper we present a computationally efficient approach for modelling and optimising horn characteristics. We investigate smooth-walled profiled horns that have a performance equivalent to that of the corrugated horns traditionally used for CMB measurements. We discuss the horn optimisation process and the algorithms available to maximise performance of a merit parameter such as low cross polarisation or high Gaussicity.


Proceedings of SPIE | 2012

New developments in waveguide mode-matching techniques for far- infrared astronomy

J. Anthony Murphy; Stephen Doherty; Neil Trappe; Colm Bracken; T. Peacocke; Créidhe M. O'Sullivan

New developments in waveguide mode matching techniques are considered, in particular the efficient modeling of waveguide cavity coupled detectors. This approach is useful in far-infrared astronomical instrumentation and cosmic microwave background experiments in which bolometers feeding horn antennas or Winston cones are often employed for high sensitivity, good control of stray light and well behaved beam patterns. While such systems can, in theory, be modeled using full wave FEM techniques it would be desirable, especially for large structures in terms of the wavelength, to exploit more efficient mode matching techniques, particularly for initial design optimization. This would also be especially useful for cavities feeding partially coherent multi-mode horns or Winston cones. The mode matching approach also allows for straightforward modeling of the complete coupling structure including the horn, waveguide cavity and absorbing layer of the bolometer, thus marking a significant advance in the ability to predict the optical efficiencies of cavity coupled bolometers. We consider typical single mode and multi-mode examples that illustrate the power of the technique.


uk europe china millimeter waves and thz technology workshop | 2015

Progress in spectral-spatial interferometry at multi-THz frequencies — Potential applications

Peter A. R. Ade; Amber Hornsby; Enzo Pascale; R. Sudiwala; Roser Juanola-Parramon; Nicola Baccichet; G. Savini; Colm Bracken; A. Donohoe; A. Murphy; Credihe O'Sullivan

Spectral-spatial interferometry pioneered in a narrow band in the near infrared has not enjoyed much exploitation as a technique. Proposed as a promising modulation method for a potential Far-infrared future satellite, a period of study was performed on two testbeds to improve and evolve this technique in the laboratory in order to simplify some of the technical aspects and the data analysis involved. Here we will present an update on the successful upgrade of a previous wideband millimetric (0.3-1.0 THz) testbed to a far-IR (11-14THz) one, as well as the ongoing progress on a broadband setup for an imaging system with a commercial thermal-or mid-IR (8 to 12 micron or 25-35 THz) camera currently working as imaging FTS. Source size, coherence and technical issues are discussed.


Fourier Transform Spectroscopy and Hyperspectral Imaging and Sounding of the Environment (2015), paper FT4A.5 | 2015

Longwavelength issues for far infrared space interferometers

J. A. Murphy; Créidhe M. O'Sullivan; A. Donohoe; Colm Bracken; Marcin Gradziel; G. Savini; Roser Juanola-Parramon; John F. Lightfoot; L. D. Spencer; Peter A. R. Ade

We discuss issues associated with diffraction effects in far-infared space interferometers, particularly wide field spacio-spectral space interferometers now being proposed. We present examples of the application of various useful quasi-optical approaches in such instruments.


Proceedings of SPIE | 2017

Radiation patterns of multimode feed-horn-coupled bolometers for FAR-IR space applications

Eimante Kalinauskaite; J. Anthony Murphy; I. McAuley; N. Trappe; Darragh McCarthy; Colm Bracken; Stephen Doherty; Marcin Gradziel; Créidhe M. O'Sullivan; Daniel Wilson; T. Peacocke; Bruno Maffei; Jean-Michel Lamarre; Peter A. R. Ade; G. Savini

A multimode horn differs from a single mode horn in that it has a larger sized waveguide feeding it. Multimode horns can therefore be utilized as high efficiency feeds for bolometric detectors, providing increased throughput and sensitivity over single mode feeds, while also ensuring good control of the beam pattern characteristics. Although a cavity mounted bolometer can be modelled as a perfect black body radiator (using reciprocity in order to calculate beam patterns), nevertheless, this is an approximation. In this paper we present how this approach can be improved to actually include the cavity coupled bolometer, now modelled as a thin absorbing film. Generally, this is a big challenge for finite element software, in that the structures are typically electrically large. However, the radiation pattern of multimode horns can be more efficiently simulated using mode matching, typically with smooth-walled waveguide modes as the basis and computing an overall scattering matrix for the horn-waveguide-cavity system. Another issue on the optical efficiency of the detectors is the presence of any free space gaps, through which power can escape. This is best dealt with treating the system as an absorber. Appropriate reflection and transmission matrices can be determined for the cavity using the natural eigenfields of the bolometer cavity system. We discuss how the approach can be applied to proposed terahertz systems, and also present results on how the approach was applied to improve beam pattern predictions on the sky for the multi-mode HFI 857GHz channel on Planck.


Proceedings of SPIE | 2016

Electromagnetic modelling of a space-borne far-infrared interferometer

A. Donohoe; Créidhe M. O'Sullivan; J. Anthony Murphy; Colm Bracken; G. Savini; Enzo Pascale; Peter A. R. Ade; R. Sudiwala; Amber Hornsby

In this paper I will describe work done as part of an EU-funded project ‘Far-infrared space interferometer critical assessment’ (FISICA). The aim of the project is to investigate science objectives and technology development required for the next generation THz space interferometer. The THz/FIR is precisely the spectral region where most of the energy from stars, exo-planetary systems and galaxy clusters deep in space is emitted. The atmosphere is almost completely opaque in the wave-band of interest so any observation that requires high quality data must be performed with a space-born instrument. A space-borne far infrared interferometer will be able to answer a variety of crucial astrophysical questions such as how do planets and stars form, what is the energy engine of most galaxies and how common are the molecule building blocks of life. The FISICA team have proposed a novel instrument based on a double Fourier interferometer that is designed to resolve the light from an extended scene, spectrally and spatially. A laboratory prototype spectral-spatial interferometer has been constructed to demonstrate the feasibility of the double-Fourier technique at far infrared wavelengths (0.15 - 1 THz). This demonstrator is being used to investigate and validate important design features and data-processing methods for future instruments. Using electromagnetic modelling techniques several issues related to its operation at long baselines and wavelengths, such as diffraction, have been investigated. These are critical to the design of the concept instrument and the laboratory testbed.

Collaboration


Dive into the Colm Bracken's collaboration.

Top Co-Authors

Avatar

Créidhe M. O'Sullivan

National University of Ireland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

G. Savini

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Anthony Murphy

National University of Ireland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge