Concepción Bermúdez
University of Cartagena
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Concepción Bermúdez.
Applied Mathematics Letters | 2012
Sergio Amat; Sonia Busquier; Concepción Bermúdez; Sergio Plaza
Abstract We study a general class of high order Newton type methods. The schemes consist of the application of several steps of Newton type methods with frozen derivatives. We are interested to improve the order of convergence in each sub-step. In particular, we should finish the computation after some stop criteria and before the full computation of the current approximation. We prove that only two sequences of parameters can be derived verifying these properties. One corresponds to a very well known family and the other is a little (but not natural) modification. Finally, we study some dynamical aspects of these families in order to find differences. Surprisingly, the less natural family seems to have a simpler dynamic.
Numerical Linear Algebra With Applications | 2009
Sergio Amat; Concepción Bermúdez; Sonia Busquier; Sergio Plaza
This paper is devoted to the study of a third-order Newton-type method. The method is free of bilinear operators, which constitutes the main limitation of the classical third-order iterative schemes. First, a global convergence theorem in the real case is presented. Second, a semilocal convergence theorem and some examples are analyzed, including quadratic equations and integral equations. Finally, an approximation using divided differences is proposed and used for the approximation of boundary-value problems. Copyright
Applied Mathematics and Computation | 2008
Sergio Amat; Concepción Bermúdez; Sonia Busquier; Sergio Plaza
Abstract The dynamics of Euler’s third-order iterative method which is used to find roots of non-linear equations applied to complex polynomials of degrees three and four is studied. The conjugacy classes of this method are found explicitly.
Journal of Computational and Applied Mathematics | 2016
Sergio Amat; Concepción Bermúdez; M. A. Hernández-Verón; Eulalia Martínez
This paper is devoted to the construction and analysis of an efficient k -step iterative method for nonlinear equations. The main advantage of this method is that it does not need to evaluate any high order Frechet derivative. Moreover, all the k -step have the same matrix, in particular only one LU decomposition is required in each iteration. We study the convergence order, the efficiency and the dynamics in order to motivate the proposed family. We prove, using some recurrence relations, a semilocal convergence result in Banach spaces. Finally, a numerical application related to nonlinear conservative systems is presented.
Algorithms | 2015
Sergio Amat; Sonia Busquier; Concepción Bermúdez; Ángel Alberto Magreñán
This paper is devoted to the semilocal convergence, using centered hypotheses, of a third order Newton-type method in a Banach space setting. The method is free of bilinear operators and then interesting for the solution of systems of equations. Without imposing any type of Frechet differentiability on the operator, a variant using divided differences is also analyzed. A variant of the method using only divided differences is also presented.
International Journal of Computer Mathematics | 2009
Sergio Amat; Concepción Bermúdez; Sonia Busquier; P. Leauthier; Sergio Plaza
The dynamics of a family of Newtons type iterative methods for second- and third-degree complex polynomials is studied. The conjugacy classes of these methods are presented. Classical properties of rational maps are used.
Journal of Computational and Applied Mathematics | 2017
Sergio Amat; Pedro J. Blázquez; Sonia Busquier; Concepción Bermúdez
Abstract In recent years wavelets decompositions have been widely used in computational Maxwell’s curl equations, to effectively resolve complex problems. In this paper, we review different types of wavelets that we can consider, the Cohen–Daubechies–Feauveau biorthogonal wavelets, the orthogonal Daubechies wavelets and the Deslauries–Dubuc interpolating wavelets. We summarize the main features of these frameworks and we propose some possible future works.
Nonlinear Dynamics | 2016
Sergio Amat; Sonia Busquier; Concepción Bermúdez; Ángel Alberto Magreñán
Journal of Computational and Applied Mathematics | 2009
Sergio Amat; Concepción Bermúdez; Sonia Busquier; Driss Mestiri
Rocky Mountain Journal of Mathematics | 2007
Sergio Amat; Concepción Bermúdez; S. Busquier; J. Gretay