Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Concepcion Cantu is active.

Publication


Featured researches published by Concepcion Cantu.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Decreased necrotizing fasciitis capacity caused by a single nucleotide mutation that alters a multiple gene virulence axis

Randall J. Olsen; Izabela Sitkiewicz; Ara A. Ayeras; Vedia E. Gonulal; Concepcion Cantu; Stephen B. Beres; Nicole M. Green; Benfang Lei; Tammy Humbird; Jamieson L. Greaver; Ellen Chang; Willie Ragasa; Charles A. Montgomery; Joiner Cartwright; Allison McGeer; Donald E. Low; Adeline R. Whitney; Philip T. Cagle; Terry L. Blasdel; Frank R. DeLeo; James M. Musser

Single-nucleotide changes are the most common cause of natural genetic variation among members of the same species, but there is remarkably little information bearing on how they alter bacterial virulence. We recently discovered a single-nucleotide mutation in the group A Streptococcus genome that is epidemiologically associated with decreased human necrotizing fasciitis (“flesh-eating disease”). Working from this clinical observation, we find that wild-type mtsR function is required for group A Streptococcus to cause necrotizing fasciitis in mice and nonhuman primates. Expression microarray analysis revealed that mtsR inactivation results in overexpression of PrsA, a chaperonin involved in posttranslational maturation of SpeB, an extracellular cysteine protease. Isogenic mutant strains that overexpress prsA or lack speB had decreased secreted protease activity in vivo and recapitulated the necrotizing fasciitis-negative phenotype of the ΔmtsR mutant strain in mice and monkeys. mtsR inactivation results in increased PrsA expression, which in turn causes decreased SpeB secreted protease activity and reduced necrotizing fasciitis capacity. Thus, a naturally occurring single-nucleotide mutation dramatically alters virulence by dysregulating a multiple gene virulence axis. Our discovery has broad implications for the confluence of population genomics and molecular pathogenesis research.


American Journal of Pathology | 2012

Full-Genome Dissection of an Epidemic of Severe Invasive Disease Caused by a Hypervirulent, Recently Emerged Clone of Group A Streptococcus

Nahuel Fittipaldi; Stephen B. Beres; Randall J. Olsen; Vivek Kapur; Patrick R. Shea; M. Ebru Watkins; Concepcion Cantu; Daniel R. Laucirica; Leslie Jenkins; Anthony R. Flores; Marguerite Lovgren; Carmen Ardanuy; Josefina Liñares; Donald E. Low; Gregory J. Tyrrell; James M. Musser

Group A Streptococcus (GAS) causes an exceptionally broad range of infections in humans, from relatively mild pharyngitis and skin infections to life-threatening necrotizing fasciitis and toxic shock syndrome. An epidemic of severe invasive human infections caused by type emm59 GAS, heretofore an exceedingly rare cause of disease, spread west to east across Canada over a 3-year period (2006 to 2008). By sequencing the genomes of 601 epidemic, historic, and other emm59 organisms, we discovered that a recently emerged, genetically distinct emm59 clone is responsible for the Canadian epidemic. Using near-real-time genome sequencing, we were able to show spread of the Canadian epidemic clone into the United States. The extensive genome data permitted us to identify patterns of geographic dissemination as well as links between emm59 subclonal lineages that cause infections. Mouse and nonhuman primate models of infection demonstrated that the emerged clone is unusually virulent. Transmission of epidemic emm59 strains may have occurred primarily by skin contact, as suggested by an experimental model of skin transmission. In addition, the emm59 strains had a significantly impaired ability to persist in human saliva and to colonize the oropharynx of mice, and seldom caused human pharyngitis. Our study contributes new information to the rapidly emerging field of molecular pathogenomics of bacterial epidemics and illustrates how full-genome data can be used to precisely illuminate the landscape of strain dissemination during a bacterial epidemic.


Journal of Clinical Microbiology | 2013

A Genomic Day in the Life of a Clinical Microbiology Laboratory

S. W. Long; D. Williams; Chandni Valson; Concepcion Cantu; Patricia L. Cernoch; James M. Musser; Randall J. Olsen

ABSTRACT Next-generation sequencing technology is available to many clinical laboratories; however, it is not yet widely used in routine microbiology practice. To demonstrate the feasibility of using whole-genome sequencing in a routine clinical microbiology workflow, we sequenced the genome of every organism isolated in our laboratory for 1 day.


Mbio | 2016

Transcriptome Remodeling Contributes to Epidemic Disease Caused by the Human Pathogen Streptococcus pyogenes

Stephen B. Beres; Priyanka Kachroo; Waleed Nasser; Randall J. Olsen; Luchang Zhu; Anthony R. Flores; Ivan de la Riva; Jesus Paez-Mayorga; Francisco E. Jimenez; Concepcion Cantu; Jaana Vuopio; Jari Jalava; Karl G. Kristinsson; Magnus Gottfredsson; Jukka Corander; Nahuel Fittipaldi; Maria Chiara Di Luca; Dezemona Petrelli; Luca Agostino Vitali; Annessa Raiford; Leslie Jenkins; James M. Musser

ABSTRACT For over a century, a fundamental objective in infection biology research has been to understand the molecular processes contributing to the origin and perpetuation of epidemics. Divergent hypotheses have emerged concerning the extent to which environmental events or pathogen evolution dominates in these processes. Remarkably few studies bear on this important issue. Based on population pathogenomic analysis of 1,200 Streptococcus pyogenes type emm89 infection isolates, we report that a series of horizontal gene transfer events produced a new pathogenic genotype with increased ability to cause infection, leading to an epidemic wave of disease on at least two continents. In the aggregate, these and other genetic changes substantially remodeled the transcriptomes of the evolved progeny, causing extensive differential expression of virulence genes and altered pathogen-host interaction, including enhanced immune evasion. Our findings delineate the precise molecular genetic changes that occurred and enhance our understanding of the evolutionary processes that contribute to the emergence and persistence of epidemically successful pathogen clones. The data have significant implications for understanding bacterial epidemics and for translational research efforts to blunt their detrimental effects. IMPORTANCE The confluence of studies of molecular events underlying pathogen strain emergence, evolutionary genetic processes mediating altered virulence, and epidemics is in its infancy. Although understanding these events is necessary to develop new or improved strategies to protect health, surprisingly few studies have addressed this issue, in particular, at the comprehensive population genomic level. Herein we establish that substantial remodeling of the transcriptome of the human-specific pathogen Streptococcus pyogenes by horizontal gene flow and other evolutionary genetic changes is a central factor in precipitating and perpetuating epidemic disease. The data unambiguously show that the key outcome of these molecular events is evolution of a new, more virulent pathogenic genotype. Our findings provide new understanding of epidemic disease. The confluence of studies of molecular events underlying pathogen strain emergence, evolutionary genetic processes mediating altered virulence, and epidemics is in its infancy. Although understanding these events is necessary to develop new or improved strategies to protect health, surprisingly few studies have addressed this issue, in particular, at the comprehensive population genomic level. Herein we establish that substantial remodeling of the transcriptome of the human-specific pathogen Streptococcus pyogenes by horizontal gene flow and other evolutionary genetic changes is a central factor in precipitating and perpetuating epidemic disease. The data unambiguously show that the key outcome of these molecular events is evolution of a new, more virulent pathogenic genotype. Our findings provide new understanding of epidemic disease.


The Journal of Infectious Diseases | 2012

Polymorphisms in Regulator of Protease B (RopB) Alter Disease Phenotype and Strain Virulence of Serotype M3 Group A Streptococcus

Randall J. Olsen; Daniel R. Laucirica; M. Ebru Watkins; Marsha L. Feske; Jesus R. Garcia-Bustillos; Chau Vu; Concepcion Cantu; Samuel A. Shelburne; Nahuel Fittipaldi; Muthiah Kumaraswami; Patrick R. Shea; Anthony R. Flores; Stephen B. Beres; Maguerite Lovgren; Gregory J. Tyrrell; Androulla Efstratiou; Donald E. Low; Chris Van Beneden; James M. Musser

Whole-genome sequencing of serotype M3 group A streptococci (GAS) from oropharyngeal and invasive infections in Ontario recently showed that the gene encoding regulator of protease B (RopB) is highly polymorphic in this population. To test the hypothesis that ropB is under diversifying selective pressure among all serotype M3 GAS strains, we sequenced this gene in 1178 strains collected from different infection types, geographic regions, and time periods. The results confirmed our hypothesis and discovered a significant association between mutant ropB alleles, decreased activity of its major regulatory target SpeB, and pharyngitis. Additionally, isoallelic strains with ropB polymorphisms were significantly less virulent in a mouse model of necrotizing fasciitis. These studies provide a model strategy for applying whole-genome sequencing followed by deep single-gene sequencing to generate new insight to the rapid evolution and virulence regulation of human pathogens.


Journal of Clinical Microbiology | 2014

Clinical Laboratory Response to a Mock Outbreak of Invasive Bacterial Infections: a Preparedness Study

Randall J. Olsen; Nahuel Fittipaldi; Priyanka Kachroo; Misu Sanson; S. Wesley Long; Kathryn Como-Sabetti; Chandni Valson; Concepcion Cantu; Ruth Lynfield; Chris A. Van Beneden; Stephen B. Beres; James M. Musser

ABSTRACT Large hospital-based clinical laboratories must be prepared to rapidly investigate potential infectious disease outbreaks. To challenge the ability of our molecular diagnostics laboratory to use whole-genome sequencing in a potential outbreak scenario and identify impediments to these efforts, we studied 84 invasive serotype emm59 group A streptococcus (GAS) strains collected in the United States. We performed a rapid-response exercise to the mock outbreak scenario using whole-genome sequencing, genome-wide transcript analysis, and mouse virulence studies. The protocol changes installed in response to the lessons learned were tested in a second iteration. The initial investigation was completed in 9 days. Whole-genome sequencing showed that the invasive infections were caused by multiple subclones of epidemic emm59 GAS strains likely spread to the United States from Canada. The phylogenetic tree showed a strong temporal-spatial structure with diversity in mobile genetic element content, features that are useful for identifying closely related strains and possible transmission events. The genome data informed the epidemiology, identifying multiple patients who likely acquired the organisms through direct person-to-person transmission. Transcriptome analysis unexpectedly revealed significantly altered expression of genes encoding a two-component regulator and the hyaluronic acid capsule virulence factor. Mouse infection studies confirmed a high-virulence capacity of these emm59 organisms. Whole-genome sequencing, coupled with transcriptome analysis and animal virulence studies, can be rapidly performed in a clinical environment to effectively contribute to patient care decisions and public health maneuvers.


Infection and Immunity | 2015

The Majority of 9,729 Group A Streptococcus Strains Causing Disease Secrete SpeB Cysteine Protease: Pathogenesis Implications

Randall J. Olsen; Anjali Raghuram; Concepcion Cantu; Meredith H. Hartman; Francisco E. Jimenez; Susan Lee; Ashley Ngo; Kelsey A. Rice; Deborah Saddington; Hannaka Spillman; Chandni Valson; Anthony R. Flores; Stephen B. Beres; S. Wesley Long; Waleed Nasser; James M. Musser

ABSTRACT Group A streptococcus (GAS), the causative agent of pharyngitis and necrotizing fasciitis, secretes the potent cysteine protease SpeB. Several lines of evidence suggest that SpeB is an important virulence factor. SpeB is expressed in human infections, protects mice from lethal challenge when used as a vaccine, and contributes significantly to tissue destruction and dissemination in animal models. However, recent descriptions of mutations in genes implicated in SpeB production have led to the idea that GAS may be under selective pressure to decrease secreted SpeB protease activity during infection. Thus, two divergent hypotheses have been proposed. One postulates that SpeB is a key contributor to pathogenesis; the other, that GAS is under selection to decrease SpeB during infection. In order to distinguish between these alternative hypotheses, we performed casein hydrolysis assays to measure the SpeB protease activity secreted by 6,775 GAS strains recovered from infected humans. The results demonstrated that 84.3% of the strains have a wild-type SpeB protease phenotype. The availability of whole-genome sequence data allowed us to determine the relative frequencies of mutations in genes implicated in SpeB production. The most abundantly mutated genes were direct transcription regulators. We also sequenced the genomes of 2,954 GAS isolates recovered from nonhuman primates with experimental necrotizing fasciitis. No mutations that would result in a SpeB-deficient phenotype were identified. Taken together, these data unambiguously demonstrate that the great majority of GAS strains recovered from infected humans secrete wild-type levels of SpeB protease activity. Our data confirm the important role of SpeB in GAS pathogenesis and help end a long-standing controversy.


American Journal of Pathology | 2015

A naturally occurring single amino acid replacement in multiple gene regulator of group a streptococcus significantly increases virulence

Misu Sanson; Brian E. O'Neill; Priyanka Kachroo; Jeff R. Anderson; Anthony R. Flores; Chandni Valson; Concepcion Cantu; Nishanth Makthal; Christof Karmonik; Nahuel Fittipaldi; Muthiah Kumaraswami; James M. Musser; Randall J. Olsen

Single-nucleotide polymorphisms (SNPs) are the most common source of genetic variation within a species; however, few investigations demonstrate how naturally occurring SNPs may increase strain virulence. We recently used group A Streptococcus as a model pathogen to study bacteria strain genotype-patient disease phenotype relationships. Whole-genome sequencing of approximately 800 serotype M59 group A Streptococcus strains, recovered during an outbreak of severe invasive infections across North America, identified a disproportionate number of SNPs in the gene encoding multiple gene regulator of group A Streptococcus (mga). Herein, we report results of studies designed to test the hypothesis that the most commonly occurring SNP, encoding a replacement of arginine for histidine at codon 201 of Mga (H201R), significantly increases virulence. Whole transcriptome analysis revealed that the H201R replacement significantly increased expression of mga and 54 other genes, including many proven virulence factors. Compared to the wild-type strain, a H201R isogenic mutant strain caused significantly larger skin lesions in mice. Serial quantitative bacterial culture and noninvasive magnetic resonance imaging also demonstrated that the isogenic H201R strain was significantly more virulent in a nonhuman primate model of joint infection. These findings show that the H201R replacement in Mga increases the virulence of M59 group A Streptococcus and provide new insight to how a naturally occurring SNP in bacteria contributes to human disease phenotypes.


Infection and Immunity | 2017

Increased Pilus Production Conferred by a Naturally Occurring Mutation Alters Host-Pathogen Interaction in Favor of Carriage in Streptococcus pyogenes

Anthony R. Flores; Randall J. Olsen; Concepcion Cantu; Kyler B. Pallister; Fermin E. Guerra; Jovanka M. Voyich; James M. Musser

ABSTRACT Studies of the human pathogen group A Streptococcus (GAS) define the carrier phenotype to be an increased ability to adhere to and persist on epithelial surfaces and a decreased ability to cause disease. We tested the hypothesis that a single amino acid change (Arg135Gly) in a highly conserved sensor kinase (LiaS) of a poorly defined GAS regulatory system contributes to a carrier phenotype through increased pilus production. When introduced into an emm serotype-matched invasive strain, the carrier allele (the gene encoding the LiaS protein with an arginine-to-glycine change at position 135 [liaSR135G]) recapitulated a carrier phenotype defined by an increased ability to adhere to mucosal surfaces and a decreased ability to cause disease. Gene transcript analyses revealed that the liaS mutation significantly altered transcription of the genes encoding pilus in the presence of bacitracin. Elimination of pilus production in the isogenic carrier mutant decreased its ability to colonize the mouse nasopharynx and to adhere to and be internalized by cultured human epithelial cells and restored the virulence phenotype in a mouse model of necrotizing fasciitis. We also observed significantly reduced survival of the isogenic carrier mutant compared to that of the parental invasive strain after exposure to human neutrophils. Elimination of pilus in the isogenic carrier mutant increased the level of survival after exposure to human neutrophils to that for the parental invasive strain. Together, our data demonstrate that the carrier mutation (liaSR135G) affects pilus expression. Our data suggest new mechanisms of pilus gene regulation in GAS and that the invasiveness associated with pilus gene regulation in GAS differs from the enhanced invasiveness associated with increased pilus production in other bacterial pathogens.


mSphere | 2017

Whole-Genome Sequencing of Human Clinical Klebsiella pneumoniae Isolates Reveals Misidentification and Misunderstandings of Klebsiella pneumoniae, Klebsiella variicola, and Klebsiella quasipneumoniae

S. Wesley Long; Sarah E. Linson; Matthew Ojeda Saavedra; Concepcion Cantu; James J. Davis; Thomas Brettin; Randall J. Olsen

Klebsiella pneumoniae is a serious human pathogen associated with resistance to multiple antibiotics and high mortality. K. variicola and K. quasipneumoniae are closely related organisms that are generally considered to be less-virulent opportunistic pathogens. We used a large, comprehensive, population-based strain collection and whole-genome sequencing to investigate infections caused by these organisms in our hospital system. We discovered that K. variicola and K. quasipneumoniae isolates are often misidentified as K. pneumoniae by routine clinical microbiology diagnostics and frequently cause severe life-threatening infections similar to K. pneumoniae. The presence of KPC in K. variicola and K. quasipneumoniae strains as well as NDM-1 metallo-beta-lactamase in one K. variicola strain is particularly concerning because these genes confer resistance to many different beta-lactam antibiotics. The sharing of plasmids, as well as evidence of homologous recombination, between these three species of Klebsiella is cause for additional concern. ABSTRACT Klebsiella pneumoniae is a major threat to public health, causing significant morbidity and mortality worldwide. The emergence of highly drug-resistant strains is particularly concerning. There has been a recognition and division of Klebsiella pneumoniae into three distinct phylogenetic groups: Klebsiella pneumoniae, Klebsiella variicola, and Klebsiella quasipneumoniae. K. variicola and K. quasipneumoniae have often been described as opportunistic pathogens that have less virulence in humans than K. pneumoniae does. We recently sequenced the genomes of 1,777 extended-spectrum-beta-lactamase (ESBL)-producing K. pneumoniae isolates recovered from human infections and discovered that 28 strains were phylogenetically related to K. variicola and K. quasipneumoniae. Whole-genome sequencing of 95 additional non-ESBL-producing K. pneumoniae isolates recovered from patients found 12 K. quasipneumoniae strains. Matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) analysis initially identified all patient isolates as K. pneumoniae, suggesting a potential pitfall in conventional clinical microbiology laboratory identification methods. Whole-genome sequence analysis revealed extensive sharing of core gene content and plasmid replicons among the Klebsiella species. For the first time, strains of both K. variicola and K. quasipneumoniae were found to carry the Klebsiella pneumoniae carbapenemase (KPC) gene, while another K. variicola strain was found to carry the New Delhi metallo-beta-lactamase 1 (NDM-1) gene. K. variicola and K. quasipneumoniae infections were not less virulent than K. pneumoniae infections, as assessed by in-hospital mortality and infection type. We also discovered evidence of homologous recombination in one K. variicola strain, as well as one strain from a novel Klebsiella species, which challenge the current understanding of interrelationships between clades of Klebsiella. IMPORTANCE Klebsiella pneumoniae is a serious human pathogen associated with resistance to multiple antibiotics and high mortality. K. variicola and K. quasipneumoniae are closely related organisms that are generally considered to be less-virulent opportunistic pathogens. We used a large, comprehensive, population-based strain collection and whole-genome sequencing to investigate infections caused by these organisms in our hospital system. We discovered that K. variicola and K. quasipneumoniae isolates are often misidentified as K. pneumoniae by routine clinical microbiology diagnostics and frequently cause severe life-threatening infections similar to K. pneumoniae. The presence of KPC in K. variicola and K. quasipneumoniae strains as well as NDM-1 metallo-beta-lactamase in one K. variicola strain is particularly concerning because these genes confer resistance to many different beta-lactam antibiotics. The sharing of plasmids, as well as evidence of homologous recombination, between these three species of Klebsiella is cause for additional concern.

Collaboration


Dive into the Concepcion Cantu's collaboration.

Top Co-Authors

Avatar

Randall J. Olsen

Houston Methodist Hospital

View shared research outputs
Top Co-Authors

Avatar

James M. Musser

Houston Methodist Hospital

View shared research outputs
Top Co-Authors

Avatar

Stephen B. Beres

Houston Methodist Hospital

View shared research outputs
Top Co-Authors

Avatar

Anthony R. Flores

Houston Methodist Hospital

View shared research outputs
Top Co-Authors

Avatar

Chandni Valson

Houston Methodist Hospital

View shared research outputs
Top Co-Authors

Avatar

Leslie Jenkins

Houston Methodist Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. Wesley Long

Houston Methodist Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge