Concepción Hernández-Chico
Cajal Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Concepción Hernández-Chico.
The Journal of Molecular Diagnostics | 2011
María Carmen Valero; Yolanda Martín; Elisabete Hernández-Imaz; Alba Marina Hernández; German Melean; Ana Valero; Francisco Javier Rodríguez-Álvarez; Dolores Tellería; Concepción Hernández-Chico
Neurofibromatosis type 1 (NF1) is a hereditary disorder caused by mutations in the NF1 gene. Detecting mutation in NF1 is hindered by the genes large size, the lack of mutation hotspots, the presence of pseudogenes, and the wide variety of possible lesions. We developed a method for detecting germline mutations by combining an original RNA-based cDNA-PCR mutation detection method and denaturing high-performance liquid chromatography (DHPLC) with multiplex ligation-dependent probe amplification (MLPA). The protocol was validated in a cohort of 56 blood samples from NF1 patients who fulfilled NIH diagnostic criteria, identifying the germline mutation in 53 cases (95% sensitivity). The efficiency and reliability of this approach facilitated detection of different types of mutations, including single-base substitutions, deletions or insertions of one to several nucleotides, microdeletions, and changes in intragenic copy number. Because mutational screening for minor lesions was performed using cDNA and the characterization of mutated alleles was performed at both the RNA and genomic DNA level, the analysis provided insight into the nature of the different mutations and their effect on NF1 mRNA splicing. After validation, we implemented the protocol as a routine test. Here we present the overall unbiased spectrum of NF1 mutations identified in 93 patients in a cohort of 105. The results indicate that this protocol is a powerful new tool for the molecular diagnosis of NF1.
Neuromuscular Disorders | 2011
Sara Bernal; Eva Also-Rallo; Rebeca Martínez-Hernández; Laura Alías; Francisco Javier Rodríguez-Álvarez; José M. Millán; Concepción Hernández-Chico; Montserrat Baiget; Eduardo F. Tizzano
Spinal muscular atrophy (SMA) is caused by loss or mutations of the survival motor neuron 1 gene (SMN1). Its highly homologous copy, SMN2, is present in all SMA cases and is a phenotypic modifier. There are cases where asymptomatic siblings of typical SMA patients possess a homozygous deletion of SMN1 just like their symptomatic brothers or sisters. Plastin 3 (PLS3) when over expressed in lymphoblasts from females has been suggested to act as a genetic modifier of SMA. We studied PLS3 expression in four Spanish SMA families with discordant siblings haploidentical for the SMA locus. We excluded PLS3 as a possible modifier in two of our families with female discordant siblings. In the remaining two, we observed small differences in PLS3 expression between male and female discordant siblings. Indeed, we found that values of PLS3 expression in lymphoblasts and peripheral blood ranged from 12 to 200-fold less than those in fibroblasts. These findings warrant further investigation in motor neurons derived from induced pluripotential stem cells of these patients.
Human Genetics | 1997
Valero Mc; Pascual-Castroviejo I; Eladio Velasco; Felipe Moreno; Concepción Hernández-Chico
Abstract Neurofibromatosis type 1 (NF1) is a common autosomal dominant disorder. To date, a relatively small number of NF1 mutations have been characterized, thus precluding genotype-phenotype correlations. By genotyping 75 NF1 families, we have detected six hemizygous patients (two of whom are members of the same family). The five presumed deletions were confirmed by two quantitative methods of analysis of NF1 copy number: Southern hybridization with cDNA probes and a single-strand conformation polymorphism analysis that discriminates between the NF1 gene and the pseudogene sequences. The five deletions remove most of the NF1 gene, at least 225 kb, from exon 9 to the 3′ end of the coding sequence. The origin of de novo mutations in the NF1 gene has been reported to be mainly paternal but we have determined that four of the de novo deletions involved the maternal chromosome and one the paternal chromosome. The six patients with deletions exhibited precocious, multiple clinical features of the disease. The incidence of tumor complications, particularly plexiform neurofibromas and intracranial tumors, among this group of patients is higher than the observed incidence in our NF1 population, suggesting that NF1 haploinsufficiency may cause a more severe phenotype with regard to tumor development. In contrast to other reports that associated large deletions with mildly dysmorphic facies, mental retardation and a large number of cutaneous neurofibromas, only one out of our six patients presented this phenotype.
Human Mutation | 2015
Kitiwan Rojnueangnit; Jing Xie; Alicia Gomes; Angela Sharp; Tom Callens; Yunjia Chen; Ying Liu; Meagan Cochran; Mary Alice Abbott; Joan F. Atkin; Dusica Babovic-Vuksanovic; Christopher Barnett; Melissa Crenshaw; Dennis Bartholomew; Lina Basel; Gary Bellus; Shay Ben-Shachar; Martin G. Bialer; David P. Bick; Bruce Blumberg; Fanny Cortés; Karen L. David; Anne Destrée; Anna Duat-Rodriguez; Dawn Earl; Luis F. Escobar; Marthanda Eswara; Begona Ezquieta; Ian Frayling; Moshe Frydman
Neurofibromatosis type 1 (NF1) is one of the most frequent genetic disorders, affecting 1:3,000 worldwide. Identification of genotype–phenotype correlations is challenging because of the wide range clinical variability, the progressive nature of the disorder, and extreme diversity of the mutational spectrum. We report 136 individuals with a distinct phenotype carrying one of five different NF1 missense mutations affecting p.Arg1809. Patients presented with multiple café‐au‐lait macules (CALM) with or without freckling and Lisch nodules, but no externally visible plexiform neurofibromas or clear cutaneous neurofibromas were found. About 25% of the individuals had Noonan‐like features. Pulmonic stenosis and short stature were significantly more prevalent compared with classic cohorts (P < 0.0001). Developmental delays and/or learning disabilities were reported in over 50% of patients. Melanocytes cultured from a CALM in a segmental NF1‐patient showed two different somatic NF1 mutations, p.Arg1809Cys and a multi‐exon deletion, providing genetic evidence that p.Arg1809Cys is a loss‐of‐function mutation in the melanocytes and causes a pigmentary phenotype. Constitutional missense mutations at p.Arg1809 affect 1.23% of unrelated NF1 probands in the UAB cohort, therefore this specific NF1 genotype–phenotype correlation will affect counseling and management of a significant number of patients.
Cytogenetic and Genome Research | 1998
A. de la Puente; E. Velasco; L.A. Pérez Jurado; Concepción Hernández-Chico; F.M. van de Rijke; S.W. Scherer; Anton K. Raap; Jesús Cruces
To further define the structure of the pericentromeric region of human chromosome 7, we have identified and characterized a YAC clone (YAC 311.H5) containing the D7S1480 locus, which maps to the short arm near the centromere of this chromosome, by linkage in CEPH families and radiation hybrid analysis. This YAC contains two new blocks of alphoid DNA (named Z5 and Z6). Both Z5 and Z6 show monomeric structures and a lack of higher-order repeats, and, therefore, belong to suprachromosomal family type 4 (M1). The orientation of the two blocks and the physical distances over the region were defined by pulsed-field gel electrophoresis (PFGE) and fluorescence in situ hybridization on chromatin fibers (FiberFISH). A YAC contig spanning the centromeric region has been developed by STS content.
American Journal of Human Genetics | 2018
Magdalena Koczkowska; Yunjia Chen; Tom Callens; Alicia Gomes; Angela Sharp; Sherrell Johnson; Meng Chang Hsiao; Zhenbin Chen; Meena Balasubramanian; Christopher Barnett; Troy A. Becker; Shay Ben-Shachar; Débora Romeo Bertola; Jaishri O. Blakeley; Emma Burkitt-Wright; Alison Callaway; Melissa Crenshaw; Karin S. Cunha; Mitch Cunningham; Maria Daniela D'Agostino; Karin Dahan; Alessandro De Luca; Anne Destrée; Radhika Dhamija; Marica Eoli; D. Gareth Evans; Patricia Galvin-Parton; Jaya K. George-Abraham; Karen W. Gripp; Jose Guevara-Campos
Neurofibromatosis type 1 (NF1), a common genetic disorder with a birth incidence of 1:2,000–3,000, is characterized by a highly variable clinical presentation. To date, only two clinically relevant intragenic genotype-phenotype correlations have been reported for NF1 missense mutations affecting p.Arg1809 and a single amino acid deletion p.Met922del. Both variants predispose to a distinct mild NF1 phenotype with neither externally visible cutaneous/plexiform neurofibromas nor other tumors. Here, we report 162 individuals (129 unrelated probands and 33 affected relatives) heterozygous for a constitutional missense mutation affecting one of five neighboring NF1 codons—Leu844, Cys845, Ala846, Leu847, and Gly848—located in the cysteine-serine-rich domain (CSRD). Collectively, these recurrent missense mutations affect ∼0.8% of unrelated NF1 mutation-positive probands in the University of Alabama at Birmingham (UAB) cohort. Major superficial plexiform neurofibromas and symptomatic spinal neurofibromas were more prevalent in these individuals compared with classic NF1-affected cohorts (both p < 0.0001). Nearly half of the individuals had symptomatic or asymptomatic optic pathway gliomas and/or skeletal abnormalities. Additionally, variants in this region seem to confer a high predisposition to develop malignancies compared with the general NF1-affected population (p = 0.0061). Our results demonstrate that these NF1 missense mutations, although located outside the GAP-related domain, may be an important risk factor for a severe presentation. A genotype-phenotype correlation at the NF1 region 844–848 exists and will be valuable in the management and genetic counseling of a significant number of individuals.
Neurogenetics | 2012
German Melean; Ana Velasco; Elisabete Hernández-Imaz; Francisco Javier Rodríguez-Álvarez; Yolanda Martín; Ana Valero; Concepción Hernández-Chico
Germline mutations in the SMARCB1 gene cause familial schwannomatosis, a condition characterized by the presence of multiple schwannomas, although mutations in SMARCB1 have also been associated with rhadboid tumor predisposition syndrome 1 (RTPS1). Both schwannomatosis and RTPS1 are autosomal dominant conditions that predispose individuals to develop distinct types of tumors. We clinically and genetically characterized two families with schwannomatosis associated with SMARCB1 mutations. Eight affected members of these families developed different numbers of schwannomas and/or meningiomas at distinct ages, evidence that meningiomas are variably expressed in this condition. We identified two germline mutations in SMARCB1 associated with the familial disease, c.233-1G>A and the novel c.207_208dupTA mutation, which both proved to affect the main SMARCB1 isoforms at the RNA level distinctly. Interestingly, the c.207_208dupTA mutation had no effect on the coding sequence, pre-mRNA splicing or the level of expression of the SMARCB1 isoform 2. Furthermore, SMARCB1 isoforms harboring a premature termination codon were largely eliminated via the nonsense-mediated mRNA decay pathway. Our results highlight the importance of RNA-based studies to characterize SMARCB1 germline mutations in order to determine their impact on protein expression and gain further insight into the genetic basis of conditions associated with SMARCB1 mutations.
Neuromuscular Disorders | 2018
Maite Calucho; Sara Bernal; Laura Alías; Francesca March; Adoración Venceslá; Francisco Javier Rodríguez-Álvarez; Elena Aller; Raquel M. Fernández; Salud Borrego; José M. Millán; Concepción Hernández-Chico; Ivón Cuscó; Pablo Fuentes-Prior; Eduardo F. Tizzano
Spinal muscular atrophy (SMA) is a neuromuscular disorder caused by loss or mutations in SMN1. According to age of onset, achieved motor abilities, and life span, SMA patients are classified into type I (never sit), II (never walk unaided) or III (achieve independent walking abilities). SMN2, the highly homologous copy of SMN1, is considered the most important phenotypic modifier of the disease. Determination of SMN2 copy number is essential to establish careful genotype-phenotype correlations, predict disease evolution, and to stratify patients for clinical trials. We have determined SMN2 copy numbers in 625 unrelated Spanish SMA patients with loss or mutation of both copies of SMN1 and a clear assignation of the SMA type by clinical criteria. Furthermore, we compiled data from relevant worldwide reports that link SMN2 copy number with SMA severity published from 1999 to date (2834 patients with different ethnic and geographic backgrounds). Altogether, we have assembled a database with a total of 3459 patients to delineate more universal prognostic rules regarding the influence of SMN2 copy number on SMA phenotype. This issue is crucial in the present scenario of therapeutic advances with the perspective of SMA neonatal screening and early diagnosis to initiate treatments.
PLOS ONE | 2015
Elisabete Hernández-Imaz; Yolanda Martín; Laura De Conti; German Melean; Ana Valero; Marco Baralle; Concepción Hernández-Chico
Neurofibromatosis type 1 (NF1) is one of the most common human hereditary disorders, predisposing individuals to the development of benign and malignant tumors in the nervous system, as well as other clinical manifestations. NF1 is caused by heterozygous mutations in the NF1 gene and around 25% of the pathogenic changes affect pre-mRNA splicing. Since the molecular mechanisms affected by these mutations are poorly understood, we have analyzed the splicing mutations identified in exon 9 of NF1, which is particularly prone to such changes, to better define the possible splicing regulatory elements. Using a minigene approach, we studied the effect of five splicing mutations in this exon described in patients. These highlighted three regulatory motifs within the exon. An in vivo splicing analysis of an extensive collection of changes generated in the minigene demonstrated that the CG motif at c.910-911 is critical for the recognition of exon 9. We also found that the GC motif at c.945-946 is involved in exon recognition through SRSF2 and that this motif is part of a Composite Exon Splicing Regulatory Element made up of physically overlapping enhancer and silencer elements. Finally, through an in vivo splicing analysis and in vitro binding assays, we demonstrated that the c.1007G>A mutation creates an Exonic Splicing Silencer element that binds the hnRNPA1 protein. The complexity of the splicing regulatory elements present in exon 9 is most likely responsible for the fact that mutations in this region represent 25% of all exonic changes that affect splicing in the NF1 gene.
Expert Review of Molecular Diagnostics | 2011
Yolanda Martín; Ana Dopazo; Concepción Hernández-Chico
Neurofibromatosis type 1 (NF1; MIM 162200) is one of the most common human autosomal dominant disorders, with an estimated incidence of one per 3500 live births. The main clinical features of this condition are multiple neurofibromas, café-au-lait spots, axillary freckling, Lisch nodules, tibial pseudarthrosis, and a predisposition to develop certain benign and malignant tumors in the nervous system [1]. NF1 is caused by heterozygous mutations in the NF1 gene (NF1; NM_000267.2), which encodes neurofibromin, a negative regulator of Ras-mediated signaling. NF1 is a classic tumor suppressor gene as its biallelic inactivation causes tumor development [2].