Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Concetta Compagno is active.

Publication


Featured researches published by Concetta Compagno.


FEBS Journal | 2007

Fermentative lifestyle in yeasts belonging to the Saccharomyces complex

Annamaria Merico; Pavol Sulo; Jure Piškur; Concetta Compagno

The yeast Saccharomyces cerevisiae is characterized by its ability to: (a) degrade glucose or fructose to ethanol, even in the presence of oxygen (Crabtree effect); (b) grow in the absence of oxygen; and (c) generate respiratory‐deficient mitochondrial mutants, so‐called petites. How unique are these properties among yeasts in the Saccharomyces clade, and what is their origin? Recent progress in genome sequencing has elucidated the phylogenetic relationships among yeasts in the Saccharomyces complex, providing a framework for the understanding of the evolutionary history of several modern traits. In this study, we analyzed over 40 yeasts that reflect over 150 million years of evolutionary history for their ability to ferment, grow in the absence of oxygen, and generate petites. A great majority of isolates exhibited good fermentation ability, suggesting that this trait could already be an intrinsic property of the progenitor yeast. We found that lineages that underwent the whole‐genome duplication, in general, exhibit a fermentative lifestyle, the Crabtree effect, and the ability to grow without oxygen, and can generate stable petite mutants. Some of the pre‐genome duplication lineages also exhibit some of these traits, but a majority of the tested species are petite‐negative, and show a reduced Crabtree effect and a reduced ability to grow in the absence of oxygen. It could be that the ability to accumulate ethanol in the presence of oxygen, a gradual independence from oxygen and/or the ability to generate petites were developed later in several lineages. However, these traits have been combined and developed to perfection only in the lineage that underwent the whole‐genome duplication and led to the modern Saccharomyces cerevisiae yeast.


Bioresource Technology | 2012

Lipid production for second generation biodiesel by the oleaginous yeast Rhodotorula graminis

Silvia Galafassi; Daniela Cucchetti; Francesca Pizza; Giuliana Franzosi; Daniele Bianchi; Concetta Compagno

The increasing cost of vegetable oils is turning the use of microbial lipids into a competitive alternative for the production of biodiesel fuel. The oleaginous yeast Rhodotorula graminis is able to use a broad range of carbon sources for lipid production, and is able to resist some of the inhibitors commonly released during hydrolysis of lignocellulosic materials. Using undetoxified corn stover hydrolysate as substrate, the yeast achieved a lipid productivity and lipid content of 0.21 g/L/h and 34%w/w, respectively. The corresponding results with crude glycerol as carbon source were 0.15 g/L/h and 54%w/w, respectively. Therefore, R. graminis appears to be a suitable candidate for fermentation processes involving renewable resources.


PLOS ONE | 2013

Yeast ''Make-Accumulate-Consume'' Life Strategy Evolved as a Multi-Step Process That Predates the Whole Genome Duplication

Arne Hagman; Torbjörn Säll; Concetta Compagno; Jure Piškur

When fruits ripen, microbial communities start a fierce competition for the freely available fruit sugars. Three yeast lineages, including baker’s yeast Saccharomyces cerevisiae, have independently developed the metabolic activity to convert simple sugars into ethanol even under fully aerobic conditions. This fermentation capacity, named Crabtree effect, reduces the cell-biomass production but provides in nature a tool to out-compete other microorganisms. Here, we analyzed over forty Saccharomycetaceae yeasts, covering over 200 million years of the evolutionary history, for their carbon metabolism. The experiments were done under strictly controlled and uniform conditions, which has not been done before. We show that the origin of Crabtree effect in Saccharomycetaceae predates the whole genome duplication and became a settled metabolic trait after the split of the S. cerevisiae and Kluyveromyces lineages, and coincided with the origin of modern fruit bearing plants. Our results suggest that ethanol fermentation evolved progressively, involving several successive molecular events that have gradually remodeled the yeast carbon metabolism. While some of the final evolutionary events, like gene duplications of glucose transporters and glycolytic enzymes, have been deduced, the earliest molecular events initiating Crabtree effect are still to be determined.


Fems Yeast Research | 2014

Why, when, and how did yeast evolve alcoholic fermentation?

Sofia Dashko; Nerve Zhou; Concetta Compagno; Jure Piškur

The origin of modern fruits brought to microbial communities an abundant source of rich food based on simple sugars. Yeasts, especially Saccharomyces cerevisiae, usually become the predominant group in these niches. One of the most prominent and unique features and likely a winning trait of these yeasts is their ability to rapidly convert sugars to ethanol at both anaerobic and aerobic conditions. Why, when, and how did yeasts remodel their carbon metabolism to be able to accumulate ethanol under aerobic conditions and at the expense of decreasing biomass production? We hereby review the recent data on the carbon metabolism in Saccharomycetaceae species and attempt to reconstruct the ancient environment, which could promote the evolution of alcoholic fermentation. We speculate that the first step toward the so-called fermentative lifestyle was the exploration of anaerobic niches resulting in an increased metabolic capacity to degrade sugar to ethanol. The strengthened glycolytic flow had in parallel a beneficial effect on the microbial competition outcome and later evolved as a “new” tool promoting the yeast competition ability under aerobic conditions. The basic aerobic alcoholic fermentation ability was subsequently “upgraded” in several lineages by evolving additional regulatory steps, such as glucose repression in the S. cerevisiae clade, to achieve a more precise metabolic control.


Fems Yeast Research | 2008

Physiological and oenological traits of different Dekkera/Brettanomyces bruxellensis strains under wine‐model conditions

Ileana Vigentini; Andrea Romano; Concetta Compagno; Annamaria Merico; Francesco Molinari; Antonio Tirelli; Roberto Foschino; Gaspare Volonterio

Contamination of wine by Dekkera/Brettanomyces bruxellensis is mostly due to the production of off-flavours identified as vinyl- and especially ethyl-phenols, but these yeasts can also produce several other spoiling metabolites, such as acetic acid and biogenic amines. Little information is available about the correlation between growth, viability and off-flavour and biogenic amine production. In the present work, five strains of Dekkera bruxellensis isolated from wine were analysed over 3 months in wine-like environment for growth, cell survival, carbon source utilization and production of volatile phenols and biogenic amines. Our data indicate that the wine spoilage potential of D. bruxellensis is strain dependent, being strictly associated with the ability to grow under oenological conditions. 4-Ethyl-phenol and 4-ethyl-guaiacol production ranged between 0 and 2.7 and 2 mg L(-1), respectively, depending on the growth conditions. Putrescine, cadaverine and spermidine were the biogenic amines found.


Biotechnology Progress | 1996

Glycerol production in a triose phosphate isomerase deficient mutant of Saccharomyces cerevisiae.

Concetta Compagno; Francesco Boschi; Bianca Maria Ranzi

Interesting challenges from metabolically engineered Saccharomyces cerevisiae cells arise from the opportunity to obtain yeast strains useful for the production of chemicals. In this paper, we show that engineered yeast cells deficient in the triose phosphate isomerase activity are able to produce glycerol without the use of steering agents. High yields of conversion of glucose into glycerol (80−90% of the theoretical yield) and productivity (1.5 g L−1 h−1) have been obtained by a bioconversion process carried out in a poor and clean medium. We obtained indications that the growth phase at which the biomass was collected affect the process. The best results were obtained using cells collected at the end of exponential phase of growth. In perspective, the strategies and the information about the physiology of the cells described here could be useful for the developing of new biotechnological processes for glycerol production, outflanking the problems related to the use of high level of steering agents.


International Journal of Food Microbiology | 2009

Genetic diversity and physiological traits of Brettanomyces bruxellensis strains isolated from Tuscan Sangiovese wines

Monica Agnolucci; Ileana Vigentini; G. Capurso; Annamaria Merico; Antonio Tirelli; Concetta Compagno; Roberto Foschino; Marco Nuti

Eighty four isolates of Brettanomyces bruxellensis, were collected during fermentation of Sangiovese grapes in several Tuscan wineries and characterized by restriction analysis of 5.8S-ITS and species-specific PCR. The isolates were subsequently analysed, at strain level, by the combined use of the RAPD-PCR assay with primer OPA-02 and the mtDNA restriction analysis with the HinfI endonuclease. This approach showed a high degree of polymorphism and allowed to identify seven haplotypes, one of them being the most represented and widely distributed (72 isolates, 85.7%). Physiological traits of the yeasts were investigated under a wine model condition. Haplotypes clustered into two groups according to their growth rates and kinetics of production of 4-ethylphenol and 4-ethylguaiacol. Hexylamine was the biogenic amine most produced (up to 3.92 mg l(-1)), followed by putrescine and phenylethylamine. Formation of octapamine was detected by some haplotypes, for the first time.


Journal of Molecular Biology | 2008

A Second Pathway to Degrade Pyrimidine Nucleic Acid Precursors in Eukaryotes.

Gorm Andersen; Olof Björnberg; Silvia Poláková; Yuriy Pynyaha; Anna Rasmussen; Kasper Møller; Anders Hofer; Thomas Moritz; Michael Sandrini; Annamaria Merico; Concetta Compagno; Hans-Erik Åkerlund; Zoran Gojkovic; Jure Piškur

Pyrimidine bases are the central precursors for RNA and DNA, and their intracellular pools are determined by de novo, salvage and catabolic pathways. In eukaryotes, degradation of uracil has been believed to proceed only via the reduction to dihydrouracil. Using a yeast model, Saccharomyces kluyveri, we show that during degradation, uracil is not reduced to dihydrouracil. Six loci, named URC1-6 (for uracil catabolism), are involved in the novel catabolic pathway. Four of them, URC3,5, URC6, and URC2 encode urea amidolyase, uracil phosphoribosyltransferase, and a putative transcription factor, respectively. The gene products of URC1 and URC4 are highly conserved proteins with so far unknown functions and they are present in a variety of prokaryotes and fungi. In bacteria and in some fungi, URC1 and URC4 are linked on the genome together with the gene for uracil phosphoribosyltransferase (URC6). Urc1p and Urc4p are therefore likely the core components of this novel biochemical pathway. A combination of genetic and analytical chemistry methods demonstrates that uridine monophosphate and urea are intermediates, and 3-hydroxypropionic acid, ammonia and carbon dioxide the final products of degradation. The URC pathway does not require the presence of an active respiratory chain and is therefore different from the oxidative and rut pathways described in prokaryotes, although the latter also gives 3-hydroxypropionic acid as the end product. The genes of the URC pathway are not homologous to any of the eukaryotic or prokaryotic genes involved in pyrimidine degradation described to date.


Yeast | 2001

Alterations of the glucose metabolism in a triose phosphate isomerase-negative Saccharomyces cerevisiae mutant

Concetta Compagno; Luca Brambilla; Daniele Capitanio; Francesco Boschi; Bianca Maria Ranzi; Danilo Porro

The absence of triose phosphate isomerase activity causes an accumulation of only one of the two trioses, dihydroxyacetone phosphate, and this produces a shift in the final product of glucose catabolism from ethanol to glycerol (Compagno et al., 1996 ). Alterations of glucose metabolism imposed by the deletion of the TPI1 gene in Saccharomyces cerevisiae were studied in batch and continuous cultures. The Δtpi1 null mutant was unable to grow on glucose as the sole carbon source. The addition of ethanol or acetate in media containing glucose, but also raffinose or galactose, relieved this effect in batch cultivation, suggesting that the Crabtree effect is not the primary cause for the mutants impaired growth on glucose. The addition of an energy source like formic acid restored glucose utilization, suggesting that a NADH/energy shortage in the Δtpi1 mutant could be a cause of the impaired growth on glucose. The amount of glycerol production in the Δtpi1 mutant could represent a good indicator of the fraction of carbon source channelled through glycolysis. Data obtained in continuous cultures on mixed substrates indicated that different contributions of glycolysis and gluconeogenesis, as well as of the HMP pathway, to glucose utilization by the Δtpi1 mutant may occur in relation to the fraction of ethanol present in the media. Copyright


Journal of Industrial Microbiology & Biotechnology | 2013

Utilization of nitrate abolishes the “Custers effect” in Dekkera bruxellensis and determines a different pattern of fermentation products

Silvia Galafassi; Claudia Capusoni; Moktaduzzaman; Concetta Compagno

Nitrate is one of the most abundant nitrogen sources in nature. Several yeast species have been shown to be able to assimilate nitrate and nitrite, but the metabolic pathway has been studied in very few of them. Dekkera bruxellensis can use nitrate as sole nitrogen source and this metabolic characteristic can render D. bruxellensis able to overcome S. cerevisiae populations in industrial bioethanol fermentations. In order to better characterize how nitrate utilization affects carbon metabolism and the yields of the fermentation products, we investigated this trait in defined media under well-controlled aerobic and anaerobic conditions. Our experiments showed that in D. bruxellensis, utilization of nitrate determines a different pattern of fermentation products. Acetic acid, instead of ethanol, became in fact the main product of glucose metabolism under aerobic conditions. We have also demonstrated that under anaerobic conditions, nitrate assimilation abolishes the “Custers effect”, in this way improving its fermentative metabolism. This can offer a new strategy, besides aeration, to sustain growth and ethanol production for the employment of this yeast in industrial processes.

Collaboration


Dive into the Concetta Compagno's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Enzo Martegani

University of Milano-Bicocca

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Danilo Porro

University of Milano-Bicocca

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge