Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cong Cao is active.

Publication


Featured researches published by Cong Cao.


Free Radical Biology and Medicine | 2014

Salvianolic acid A protects RPE cells against oxidative stress through activation of Nrf2/HO-1 signaling

Hui Zhang; Yuan-yuan Liu; Qin Jiang; Ke-ran Li; Yu-xia Zhao; Cong Cao; Jin Yao

Reactive oxygen species (ROS) impair the physiological functions of retinal pigment epithelial (RPE) cells, which is known as one major cause of age-related macular degeneration. Salvianolic acid A (Sal A) is the main effective aqueous extract of Salvia miltiorrhiza. The aim of this study was to test the potential role of Sal A against oxidative stress in cultured RPE cells and to investigate the underlying mechanistic signaling pathways. We observed that Sal A significantly inhibited hydrogen peroxide (H2O2)-induced primary and transformed RPE cell death and apoptosis. H2O2-stimulated mitogen-activated protein kinase activation, ROS production, and subsequent proapoptotic AMP-activated protein kinase activation were largely inhibited by Sal A. Further, Sal A stimulation resulted in a fast and dramatic activation of Akt/mammalian target of rapamycin complex 1 (mTORC1) signaling, followed by phosphorylation, accumulation, and nuclear translocation of the NF-E2-related factor 2 (Nrf2), along with increased expression of the antioxidant-response element-dependent gene heme oxygenase-1 (HO-1). Both Nrf2 and HO-1 were required for Sal A-mediated cytoprotective effect, as Nrf2/HO-1 inhibition abolished Sal A-induced beneficial effects against H2O2. Meanwhile, the PI3K/Akt/mTORC1 chemical inhibitors not only suppressed Sal A-induced Nrf2/HO-1 activation, but also eliminated its cytoprotective effect in RPE cells. These observations suggest that Sal A activates the Nrf2/HO-1 axis in RPE cells and protects against oxidative stress via activation of Akt/mTORC1 signaling.


Journal of Investigative Dermatology | 2015

Requirement of Gαi1/3-Gab1 signaling complex for keratinocyte growth factor-induced PI3K-AKT-mTORC1 activation

Yiming Zhang; Zhi-qing Zhang; Yuan-yuan Liu; Xin Zhou; Xiaohua Shi; Qin Jiang; Dongli Fan; Cong Cao

Keratinocyte growth factor (KGF), also termed as fibroblast growth factor-7, promotes proliferation, migration, and adhesion of skin keratinocytes via binding to keratinocyte growth factor receptor (KGFR) and subsequent activation of downstream signaling including the PI3K-AKT-mTORC1 pathway. Here, we found that the α-subunits of the G proteins (Gαi1/3) and growth factor receptor binding 2-associated binding protein 1 (Gab1) are required for this activation process. With KGF stimulation, Gαi1/3 formed a complex with KGFR and was required for subsequent Gab1 recruitment, phosphorylation, and following PI3K-p85 activation. In addition, Gαi1/3 short hairpin RNA knockdown largely inhibited KGF-induced cell proliferation, migration, and the accumulation of cyclin D1/fibronectin in cultured skin keratinocytes. Furthermore, we observed increased expression of Gαi1/3 in wounded human skin and keloid skin tissues, suggesting the possible involvement of Gαi1/3 in wound healing and keloid formation. Overall, we suggest that Gαi1/3 proteins lie downstream of KGFR, but upstream of Gab1-mediated activation of PI3K-AKT-mTORC1 signaling, thus revealing a role for Gαi proteins in mediating KGFR signaling, cell migration, and possible wound healing.


Oncotarget | 2016

SC79 protects retinal pigment epithelium cells from UV radiation via activating Akt-Nrf2 signaling

Yi-qing Gong; Wei Huang; Ke-ran Li; Yuan-yuan Liu; Guo-fan Cao; Cong Cao; Qin Jiang

Excessive Ultra-violet (UV) radiation causes oxidative damages and apoptosis in retinal pigment epithelium (RPE) cells. Here we tested the potential activity of SC79, a novel small molecule activator of Akt, against the process. We showed that SC79 activated Akt in primary and established (ARPE-19 line) RPE cells. It protected RPE cells from UV damages possibly via inhibiting cell apoptosis. Akt inhibition, via an Akt specific inhibitor (MK-2206) or Akt1 shRNA silence, almost abolished SC79-induced RPE cytoprotection. Further studies showed that SC79 activated Akt-dependent NF-E2-related factor 2 (Nrf2) signaling and inhibited UV-induced oxidative stress in RPE cells. Reversely, Nrf2 shRNA knockdown or S40T mutation attenuated SC79-induced anti-UV activity. For the in vivo studies, we showed that intravitreal injection of SC79 significantly protected mouse retina from light damages. Based on these results, we suggest that SC79 protects RPE cells from UV damages possibly via activating Akt-Nrf2 signaling axis.


PLOS ONE | 2013

Ginsenoside Rg-1 Protects Retinal Pigment Epithelium (RPE) Cells from Cobalt Chloride (CoCl2) and Hypoxia Assaults

Ke-ran Li; Zhi-qing Zhang; Jin Yao; Yu-xia Zhao; Jing Duan; Cong Cao; Qin Jiang

Severe retinal ischemia causes persistent visual impairments in eye diseases. Retinal pigment epithelium (RPE) cells are located near the choroidal capillaries, and are easily affected by ischemic or hypoxia. Ginsenoside Rg-1 has shown significant neuroprotective effects. This study was performed to test the cytoprotective effect of ginsenoside Rg-1 in RPE cells against hypoxia and cobalt chloride (CoCl2) assaults, and to understand the underlying mechanisms. We found that Rg-1 pre-administration significantly inhibited CoCl2- and hypoxia-induced RPE cell death and apoptosis. Reactive oxygen specisis (ROS)-dependent p38 and c-Jun NH(2)-terminal kinases (JNK) MAPK activation was required for CoCl2-induced RPE cell death, and Rg-1 pre-treatment significantly inhibited ROS production and following p38/JNK activation. Further, CoCl2 suppressed pro-survival mTOR complex 1 (mTORC1) activation in RPE cells through activating of AMP-activated protein kinase (AMPK), while Rg-1 restored mTORC1 activity through inhibiting AMPK activation. CoCl2-induced AMPK activation was also dependent on ROS production, and anti-oxidant N-acetylcysteine (NAC) prevented AMPK activation and RPE cell death by CoCl2. Our results indicated that Rg-1 could be further investigated as a novel cell-protective agent for retinal ischemia.


Scientific Reports | 2016

3H-1,2-dithiole-3-thione protects retinal pigment epithelium cells against Ultra-violet radiation via activation of Akt-mTORC1-dependent Nrf2-HO-1 signaling.

Ke-ran Li; Su-qing Yang; Yi-qing Gong; Hong Yang; Xiu-Miao Li; Yu-xia Zhao; Jin Yao; Qin Jiang; Cong Cao

Excessive UV radiation and reactive oxygen species (ROS) cause retinal pigment epithelium (RPE) cell injuries. Nrf2 regulates transcriptional activation of many anti-oxidant genes. Here, we tested the potential role of 3H-1,2-dithiole-3-thione (D3T) against UV or ROS damages in cultured RPE cells (both primary cells and ARPE-19 line). We showed that D3T significantly inhibited UV-/H2O2-induced RPE cell death and apoptosis. UV-stimulated ROS production was dramatically inhibited by D3T pretreatment. D3T induced Nrf2 phosphorylation in cultured RPE cells, causing Nrf2 disassociation with KEAP1 and its subsequent nuclear accumulation. This led to expression of antioxidant response elements (ARE)-dependent gene heme oxygenase-1 (HO-1). Nrf2-HO-1 activation was required for D3T-mediated cytoprotective effect. Nrf2 shRNA knockdown or S40T dominant negative mutation as well as the HO-1 inhibitor Zinc protoporphyrin (ZnPP) largely inhibited D3T’s RPE cytoprotective effects against UV radiation. Yet, exogenous overexpression Nrf2 enhanced D3T’s activity in RPE cells. Further studies showed that D3T activated Akt/mTORC1 in cultured RPE cells. Akt-mTORC1 inhibitors, or Akt1 knockdown by shRNA, not only inhibited D3T-induced Nrf2-HO-1 activation, but also abolished the RPE cytoprotective effects. In vivo, D3T intravitreal injection protected from light-induced retinal dysfunctions in mice. Thus, D3T protects RPE cells from UV-induced damages via activation of Akt-mTORC1-Nrf2-HO-1 signaling axis.


PLOS ONE | 2013

Functional Expression of TWEAK and the Receptor Fn14 in Human Malignant Ovarian Tumors: Possible Implication for Ovarian Tumor Intervention

Liying Gu; Lan Dai; Cong Cao; Jing Zhu; Chuanwei Ding; Hai-bo Xu; Lihua Qiu; Wen Di

The aim of this current study was to investigate the expression of the tumor necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK) and its receptor fibroblast growth factor-inducible 14 (Fn14) in human malignant ovarian tumors, and test TWEAK’s potential role on tumor progression in cell models in-vitro. Using immunohistochemistry (IHC), we found that TWEAK and its receptor Fn14 were expressed in human malignant ovarian tumors, but not in normal ovarian tissues or in borderline/benign epithelial ovarian tumors. High levels of TWEAK expression was detected in the majority of malignant tumors (36 out of 41, 87.80%). Similarly, 35 out of 41 (85.37%) malignant ovarian tumors were Fn14 positive. In these malignant ovarian tumors, however, TWEAK/Fn14 expression was not corrected with patients’ clinical subtype/stages or pathological features. In vitro, we demonstrated that TWEAK only inhibited ovarian cancer HO-8910PM cell proliferation in combination with tumor necrosis factor-α (TNF-α), whereas either TWEAK or TNF-α alone didn’t affect HO-8910PM cell growth. TWEAK promoted TNF-α production in cultured THP-1 macrophages. Meanwhile, conditioned media from TWEAK-activated macrophages inhibited cultured HO-8910PM cell proliferation and invasion. Further, TWEAK increased monocyte chemoattractant protein-1 (MCP-1) production in cultured HO-8910PM cells to possibly recruit macrophages. Our results suggest that TWEAK/Fn14, by activating macrophages, could be ovarian tumor suppressors. The unique expression of TWEAK/Fn14 in malignant tumors indicates that it might be detected as a malignant ovarian tumor marker.


PLOS ONE | 2013

Genome-Wide Methylated DNA Immunoprecipitation Analysis of Patients with Polycystic Ovary Syndrome

Haoran Shen; Lihua Qiu; Zhi-qing Zhang; Yuan-yuan Qin; Cong Cao; Wen Di

Polycystic ovary syndrome (PCOS) is a complex, heterogeneous disorder of uncertain etiology. Recent studies suggested that insulin resistance (IR) plays an important role in the development of PCOS. In the current study, we aimed to investigate the molecular mechanism of IR in PCOS. We employed genome-wide methylated DNA immunoprecipitation (MeDIP) analysis to characterize genes that are differentially methylated in PCOS patients vs. healthy controls. Besides, we also identified the differentially methylated genes between patients with PCOS-non-insulin resistance (PCOS-NIR) and PCOS-insulin resistance (PCOS-IR). A total of 79 genes were differentially methylated between PCOS-NIR vs. PCOS-IR patients, and 40 genes were differentially methylated in PCOS patients vs. healthy controls. We analyzed these differentially methylated genes by constructing regulatory networks and protein-protein interaction (PPI) networks. Further, Gene Ontology (GO) and pathway enrichment analysis were also performed to investigate the biological functions of networks. We identified multiple categories of genes that were differentially methylated between PCOS-NIR and PCOS-IR patients, or between PCOS patients and healthy controls. Significantly, GO categories of immune response were differentially methylated in PCOS-IR vs. PCOS-NIR. Further, genes in cancer pathways were also differentially methylated in PCOS-NIR vs. PCOS-IR patients or in PCOS patients vs. healthy controls. The results of this current study will help to further understand the mechanism of PCOS.


PLOS ONE | 2014

Osteopontin (OPN) Is an Important Protein to Mediate Improvements in the Biocompatibility of C Ion-Implanted Silicone Rubber

Shaoliang Wang; Xiaohua Shi; Zhi Yang; Yiming Zhang; Li-ru Shen; Zeyuan Lei; Zhi-qing Zhang; Cong Cao; Dongli Fan

Medical device implants are drawing increasing amounts of interest from modern medical practitioners. However, this attention is not evenly spread across all such devices; most of these implantable devices can cause adverse reactions such as inflammation, fibrosis, thrombosis, and infection. In this work, the biocompatibility of silicone rubber (SR) was improved through carbon (C) ion implantation. Scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD) results confirmed that these newly generated carbon-implanted silicone rubbers (C-SRs) had large, irregular peaks and deep valleys on their surfaces. The water contact angle of the SR surface decreased significantly after C ion implantation. C ion implantation also changed the surface charge distribution, silicone oxygen rate, and chemical-element distribution of SR to favor cell attachment. The dermal fibroblasts cultured on the surface C-SR grew faster and showed more typical fibroblastic shapes. The expression levels of major adhesion proteins, including talin-1, zyxin, and vinculin, were significantly higher in dermal fibroblasts cultured on C-SR coated plates than in dermal fibroblasts cultured on SR. Those same dermal fibroblasts on C-SRs showed more pronounced adhesion and migration abilities. Osteopontin (OPN), a critical extracellular matrix (ECM) protein, was up-regulated and secreted from dermal fibroblasts cultured on C-SR. Matrix metalloproteinase-9 (MMP-9) activity was also increased. These cells were highly mobile and were able to adhere to surfaces, but these abilities were inhibited by the monoclonal antibody against OPN, or by shRNA-mediated MMP-9 knockdown. Together, these results suggest that C ion implantation significantly improves SR biocompatibility, and that OPN is important to promote cell adhesion to the C-SR surface.


Oncogene | 2018

microRNA-200a downregulation in human glioma leads to Gαi1 over-expression, Akt activation, and cell proliferation

Yuan-yuan Liu; Min-Bin Chen; Long Cheng; Zhi-qing Zhang; Zheng-quan Yu; Qin Jiang; Gang Chen; Cong Cao

We previously identified a pivotal role for G protein α inhibitory subunit 1 (Gαi1) in mediating PI3K-Akt signaling by receptor tyrosine kinases (RTKs). Here, we examined the expression and biological function of Gαi1 in human glioma. Gαi1 mRNA and protein expression were significantly upregulated in human glioma tissues, which correlated with downregulation of an anti-Gαi1 miRNA: microRNA-200a (“miR-200a”). Forced-expression of miR-200a in established (A172/U251MG lines) and primary (patient-derived) human glioma cells resulted in Gαi1 downregulation, Akt inactivation and proliferation inhibition. Reduction of Gαi1 expression by shRNA, dominant negative mutant interference, or complete Gαi1 depletion inhibited Akt activation and cell proliferation. Notably, miR-200a was unable to inhibit glioma cell proliferation when Gαi1 was silenced or mutated. Co-immunoprecipitation studies, in human glioma cells and tissues, show that Gαi1 forms a complex with multiple RTKs (EGFR, PDGFRα, and FGFR) and the adapter protein Gab1. In vivo, the growth of subcutaneous and orthotopic glioma xenografts in nude mice was largely inhibited by expression of Gαi1 shRNA or miRNA-200a. Collectively, miR-200a downregulation in human glioma leads to Gαi1 over-expression, Akt activation and glioma cell proliferation.


Free Radical Biology and Medicine | 2018

Activation of Nrf2 by Ginsenoside Rh3 protects retinal pigment epithelium cells and retinal ganglion cells from UV

Chunzhou Tang; Ke-ran Li; Qing Yu; Qin Jiang; Jin Yao; Cong Cao

ABSTRACT Excessive Ultra‐violet (UV) radiation shall induce damages to resident retinal pigment epithelium (RPE) cells (RPEs) and retinal ganglion cells (RGCs). Here we tested the potential activity of Ginsenoside Rh3 (“Rh3”) against the process. In cultured human RPEs and RGCs, pretreatment with Rh3 inhibited UV‐induced reactive oxygen species (ROS) production and following apoptotic/non‐apoptotic cell death. Rh3 treatment in retinal cells induced nuclear‐factor‐E2‐related factor 2 (Nrf2) activation, which was evidenced by Nrf2 protein stabilization and its nuclear translocation, along with transcription of antioxidant responsive element (ARE)‐dependent genes (HO1, NOQ1 and GCLC). Nrf2 knockdown by targeted‐shRNA almost abolished Rh3‐induced retinal cell protection against UV. Further studies found that Rh3 induced microRNA‐141 (“miR‐141”) expression, causing downregulation of its targeted gene Keap1 in RPEs and RGCs. On the other hand, Rh3‐induced Nrf2 activation and retinal cell protection were largely attenuated by the miR‐141s inhibitor, antagomiR‐141. In vivo, intravitreal injection of Rh3 inhibited retinal dysfunction by light damage in mice. Rh3 intravitreal injection also induced miR‐141 expression, Keap1 downregulation and Nrf2 activation in mouse retinas. We conclude that Rh3 protects retinal cells from UV via activating Nrf2 signaling. Graphical abstract Figure. No Caption available. HighlightsGinsenoside Rh3 protects human RPEs and RGCs from UV radiation.Ginsenoside Rh3 activates Nrf2 signaling in retinal cells.Nrf2 activation is required for Ginsenoside Rh3‐mediated retinal cell protection.Ginsenoside Rh3 up‐regulates microRNA‐141 to downregulate Keap1 in retinal cells.Ginsenoside Rh3 protects mouse retina from light‐induced damages in vivo.

Collaboration


Dive into the Cong Cao's collaboration.

Top Co-Authors

Avatar

Qin Jiang

Nanjing Medical University

View shared research outputs
Top Co-Authors

Avatar

Ke-ran Li

Nanjing Medical University

View shared research outputs
Top Co-Authors

Avatar

Jin Yao

Nanjing Medical University

View shared research outputs
Top Co-Authors

Avatar

Qing Yu

Nanjing Medical University

View shared research outputs
Top Co-Authors

Avatar

Yu-xia Zhao

Nanjing Medical University

View shared research outputs
Top Co-Authors

Avatar

Dongli Fan

Third Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Lihua Qiu

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wen Di

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Xiao-Pei Zhang

Nanjing Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge