Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Congrong Wang is active.

Publication


Featured researches published by Congrong Wang.


Nature Genetics | 2012

Meta-analysis of genome-wide association studies identifies eight new loci for type 2 diabetes in east Asians.

Yoon Shin Cho; Chien-Hsiun Chen; Cheng Hu; Jirong Long; Rick Twee-Hee Ong; Xueling Sim; Fumihiko Takeuchi; Ying Wu; Min Jin Go; Toshimasa Yamauchi; Yi-Cheng Chang; Soo Heon Kwak; Ronald C.W. Ma; Ken Yamamoto; Linda S. Adair; Tin Aung; Qiuyin Cai; Li Ching Chang; Yuan-Tsong Chen; Yu-Tang Gao; Frank B. Hu; Hyung Lae Kim; Sangsoo Kim; Young-Jin Kim; Jeannette Lee; Nanette R. Lee; Yun Li; Jianjun Liu; Wei Lu; Jiro Nakamura

We conducted a three-stage genetic study to identify susceptibility loci for type 2 diabetes (T2D) in east Asian populations. We followed our stage 1 meta-analysis of eight T2D genome-wide association studies (6,952 cases with T2D and 11,865 controls) with a stage 2 in silico replication analysis (5,843 cases and 4,574 controls) and a stage 3 de novo replication analysis (12,284 cases and 13,172 controls). The combined analysis identified eight new T2D loci reaching genome-wide significance, which mapped in or near GLIS3, PEPD, FITM2-R3HDML-HNF4A, KCNK16, MAEA, GCC1-PAX4, PSMD6 and ZFAND3. GLIS3, which is involved in pancreatic beta cell development and insulin gene expression, is known for its association with fasting glucose levels. The evidence of an association with T2D for PEPD and HNF4A has been shown in previous studies. KCNK16 may regulate glucose-dependent insulin secretion in the pancreas. These findings, derived from an east Asian population, provide new perspectives on the etiology of T2D.


PLOS ONE | 2009

PPARG, KCNJ11, CDKAL1, CDKN2A-CDKN2B, IDE-KIF11-HHEX, IGF2BP2 and SLC30A8 are associated with type 2 diabetes in a Chinese population.

Cheng Hu; Rong Zhang; Congrong Wang; Jie Wang; Xiaojing Ma; Jingyi Lu; Wen Qin; Xuhong Hou; Chen Wang; Yuqian Bao; Kunsan Xiang; Weiping Jia

Background Recent advance in genetic studies added the confirmed susceptible loci for type 2 diabetes to eighteen. In this study, we attempt to analyze the independent and joint effect of variants from these loci on type 2 diabetes and clinical phenotypes related to glucose metabolism. Methods/Principal Findings Twenty-one single nucleotide polymorphisms (SNPs) from fourteen loci were successfully genotyped in 1,849 subjects with type 2 diabetes and 1,785 subjects with normal glucose regulation. We analyzed the allele and genotype distribution between the cases and controls of these SNPs as well as the joint effects of the susceptible loci on type 2 diabetes risk. The associations between SNPs and type 2 diabetes were examined by logistic regression. The associations between SNPs and quantitative traits were examined by linear regression. The discriminative accuracy of the prediction models was assessed by area under the receiver operating characteristic curves. We confirmed the effects of SNPs from PPARG, KCNJ11, CDKAL1, CDKN2A-CDKN2B, IDE-KIF11-HHEX, IGF2BP2 and SLC30A8 on risk for type 2 diabetes, with odds ratios ranging from 1.114 to 1.406 (P value range from 0.0335 to 1.37E-12). But no significant association was detected between SNPs from WFS1, FTO, JAZF1, TSPAN8-LGR5, THADA, ADAMTS9, NOTCH2-ADAM30 and type 2 diabetes. Analyses on the quantitative traits in the control subjects showed that THADA SNP rs7578597 was association with 2-h insulin during oral glucose tolerance tests (P = 0.0005, empirical P = 0.0090). The joint effect analysis of SNPs from eleven loci showed the individual carrying more risk alleles had a significantly higher risk for type 2 diabetes. And the type 2 diabetes patients with more risk allele tended to have earlier diagnostic ages (P = 0.0006). Conclusions/Significance The current study confirmed the association between PPARG, KCNJ11, CDKAL1, CDKN2A-CDKN2B, IDE-KIF11-HHEX, IGF2BP2 and SLC30A8 and type 2 diabetes. These type 2 diabetes risk loci contributed to the disease additively.


Diabetologia | 2009

Variations in KCNQ1 are associated with type 2 diabetes and beta cell function in a Chinese population

Cheng Hu; Congrong Wang; Rong Zhang; X. Ma; J. Wang; Jingyi Lu; W. Qin; Yuqian Bao; K. Xiang; Weiping Jia

Aims/hypothesisRecent genome-wide association studies in East Asian populations reported that single nucleotide polymorphisms (SNPs) in KCNQ1 are associated with type 2 diabetes. The aim of this study was to validate this finding in a Chinese population.MethodsWe genotyped four SNPs, rs2074196, rs2237892, rs2237895 and rs2237897, in a group of 3,503 Shanghai Chinese individuals, comprising 1,769 type 2 diabetic patients and 1,734 normoglycaemic controls. Both the cases and the controls were extensively phenotyped for anthropometric and biochemical traits related to glucose metabolism. Arginine stimulation tests under fasting conditions were performed in a subgroup of 466 cases.ResultsAll four of the SNPs were associated with type 2 diabetes, with rs2237892 showing strongest evidence for association (OR 1.532, 95% CI 1.381–1.698, p = 5.0 × 10−16). The SNP rs2237897 was associated with both acute insulin and C-peptide response after arginine stimulation in a subgroup of cases (p = 0.0471 and p = 0.0156, respectively). The SNP rs2237895 was associated with both first- and second-phase insulin secretion in the controls (p = 0.0334 and p = 0.0002, respectively).Conclusions/interpretationIn this study we found that KCNQ1 was associated with type 2 diabetes susceptibility in a Chinese population, possibly through its effect on beta cell function.


Science Translational Medicine | 2013

Melamine-Induced Renal Toxicity Is Mediated by the Gut Microbiota

Xiaojiao Zheng; Aihua Zhao; Guoxiang Xie; Yi Chi; Linjing Zhao; Li H; Congrong Wang; Yuqian Bao; Weiping Jia; Luther M; Mingming Su; Jeremy K. Nicholson

Melamine is converted to cyanuric acid by the gut microbe Klebsiella, leading to melamine-cyanurate-urate coprecipitation that is associated with nephrotoxicity. An Unwitting Microbial Culprit in Melamine Toxicity? A tragic incident in China in 2008 involving the deliberate and illicit supplementation of milk with melamine resulted in the deaths of children from renal failure and highlighted the toxicity of this compound. In a new study, Zheng et al. study the toxicity of melamine in rats and report that microbial metabolism of melamine is crucial for forming the key metabolite that causes kidney damage. They discover that a species of Klebsiella can form cyanuric acid from melamine, which then forms complex precipitates that lead to kidney stone formation. The gut microbiota in general play an important role in human health and are known to affect the metabolism and toxicity of a number of drugs. The new findings suggest that individual variation in the gut microbial composition of children exposed to melamine may have been important in the observed patterns of mortality in exposed individuals. Melamine poisoning has become widely publicized after a recent occurrence of renal injury in infants and children exposed to melamine-tainted milk in China. This renal damage is believed to result from kidney stones formed from melamine and uric acid or from melamine and its cocrystallizing chemical derivative, cyanuric acid. However, the composition of the stones and the mechanism by which the stones are formed in the renal tubules are unknown. We report that cyanuric acid can be produced in the gut by microbial transformation of melamine and serves as an integral component of the kidney stones responsible for melamine-induced renal toxicity in rats. Melamine-induced toxicity in rats was attenuated and melamine excretion increased after antibiotic suppression of gut microbial activity. We further demonstrated that melamine is converted to cyanuric acid in vitro by bacteria cultured from normal rat feces; Klebsiella was subsequently identified in fecal samples by 16S ribosomal DNA sequencing. In culture, Klebsiella terrigena was shown to convert melamine to cyanuric acid directly. Rats colonized by K. terrigena showed exacerbated melamine-induced nephrotoxicity. Cyanuric acid was detected in the kidneys of rats administered melamine alone, and the concentration after Klebsiella colonization was increased. These findings suggest that the observed toxicity of melamine may be conditional on the exact composition and metabolic activities of the gut microbiota.


Journal of Biological Chemistry | 2011

Missense Mutation in APOC3 within the C-terminal Lipid Binding Domain of Human ApoC-III Results in Impaired Assembly and Secretion of Triacylglycerol-rich Very Low Density Lipoproteins EVIDENCE THAT ApoC-III PLAYS A MAJOR ROLE IN THE FORMATION OF LIPID PRECURSORS WITHIN THE MICROSOMAL LUMEN

Wen Qin; Meenakashi Sundaram; Yuwei Wang; Hu Zhou; Shumei Zhong; Chia-Ching Chang; Sanjay Manhas; Erik F. Yao; Robin J. Parks; Pamela J. McFie; Scot J. Stone; Zhenghui G. Jiang; Congrong Wang; Daniel Figeys; Weiping Jia; Zemin Yao

Hepatic assembly of triacylglycerol (TAG)-rich very low density lipoproteins (VLDL) is achieved through recruitment of bulk TAG (presumably in the form of lipid droplets within the microsomal lumen) into VLDL precursor containing apolipoprotein (apo) B-100. We determined protein/lipid components of lumenal lipid droplets (LLD) in cells expressing recombinant human apoC-III (C3wt) or a mutant form (K58E, C3KE) initially identified in humans that displayed hypotriglyceridemia. Although expression of C3wt markedly stimulated secretion of TAG and apoB-100 as VLDL1, the K58E mutation (located at the C-terminal lipid binding domain) abolished the effect in transfected McA-RH7777 cells and in apoc3-null mice. Metabolic labeling studies revealed that accumulation of TAG in LLD was decreased (by 50%) in cells expressing C3KE. A Fat Western lipid protein overlay assay showed drastically reduced lipid binding of the mutant protein. Substituting Lys58 with Arg demonstrated that the positive charge at position 58 is crucial for apoC-III binding to lipid and for promoting TAG secretion. On the other hand, substituting both Lys58 and Lys60 with Glu resulted in almost entire elimination of lipid binding and loss of function in promoting TAG secretion. Thus, the lipid binding domain of apoC-III plays a key role in the formation of LLD for hepatic VLDL assembly and secretion.


Diabetologia | 2013

Genome-wide association study in a Chinese population identifies a susceptibility locus for type 2 diabetes at 7q32 near PAX4.

Ronald C.W. Ma; Cheng Hu; Claudia H. T. Tam; Rong Zhang; Patrick Kwan; Ting Fan Leung; G. N. Thomas; Min Jin Go; Kazuo Hara; Xueling Sim; Janice S. K. Ho; Congrong Wang; Huaixing Li; Ling Lu; Yu-cheng Wang; Jing-Woei Li; V. K. L. Lam; J. Wang; Weihui Yu; Y. J. Kim; Daniel Peng Keat Ng; Hideo Fujita; Kalliope Panoutsopoulou; Aaron G. Day-Williams; H.M. Lee; A. C. W. Ng; Y-J. Fang; A. P. S. Kong; Feng Jiang; X. Ma

Aims/hypothesisMost genetic variants identified for type 2 diabetes have been discovered in European populations. We performed genome-wide association studies (GWAS) in a Chinese population with the aim of identifying novel variants for type 2 diabetes in Asians.MethodsWe performed a meta-analysis of three GWAS comprising 684 patients with type 2 diabetes and 955 controls of Southern Han Chinese descent. We followed up the top signals in two independent Southern Han Chinese cohorts (totalling 10,383 cases and 6,974 controls), and performed in silico replication in multiple populations.ResultsWe identified CDKN2A/B and four novel type 2 diabetes association signals with p < 1 × 10−5 from the meta-analysis. Thirteen variants within these four loci were followed up in two independent Chinese cohorts, and rs10229583 at 7q32 was found to be associated with type 2 diabetes in a combined analysis of 11,067 cases and 7,929 controls (pmeta = 2.6 × 10−8; OR [95% CI] 1.18 [1.11, 1.25]). In silico replication revealed consistent associations across multiethnic groups, including five East Asian populations (pmeta = 2.3 × 10−10) and a population of European descent (p = 8.6 × 10−3). The rs10229583 risk variant was associated with elevated fasting plasma glucose, impaired beta cell function in controls, and an earlier age at diagnosis for the cases. The novel variant lies within an islet-selective cluster of open regulatory elements. There was significant heterogeneity of effect between Han Chinese and individuals of European descent, Malaysians and Indians.Conclusions/interpretationOur study identifies rs10229583 near PAX4 as a novel locus for type 2 diabetes in Chinese and other populations and provides new insights into the pathogenesis of type 2 diabetes.


PLOS ONE | 2010

Variants from GIPR, TCF7L2, DGKB, MADD, CRY2, GLIS3, PROX1, SLC30A8 and IGF1 are associated with glucose metabolism in the Chinese.

Cheng Hu; Rong Zhang; Congrong Wang; Jie Wang; Xiaojing Ma; Xuhong Hou; Jingyi Lu; Weihui Yu; Feng Jiang; Yuqian Bao; Kunsan Xiang; Weiping Jia

BACKGROUND Recent meta-analysis of genome-wide association studies in European descent samples identified novel loci influencing glucose and insulin related traits. In the current study, we aimed to evaluate the association between these loci and traits related to glucose metabolism in the Chinese. METHODS/PRINCIPAL FINDINGS We genotyped seventeen single nucleotide polymorphisms (SNPs) from fifteen loci including GIPR, ADCY5, TCF7L2, VPS13C, DGKB, MADD, ADRA2A, FADS1, CRY2, SLC2A2, GLIS3, PROX1, C2CD4B, SLC30A8 and IGF1 in 6,822 Shanghai Chinese Hans comprising 3,410 type 2 diabetic patients and 3,412 normal glucose regulation subjects. MADD rs7944584 showed strong association to type 2 diabetes (p = 3.5×10(-6), empirical p = 0.0002) which was not observed in the European descent populations. SNPs from GIPR, TCF7L2, CRY2, GLIS3 and SLC30A8 were also associated with type 2 diabetes (p = 0.0487∼2.0×10(-8)). Further adjusting age, gender and BMI as confounders found PROX1 rs340874 was associated with type 2 diabetes (p = 0.0391). SNPs from DGKB, MADD and SLC30A8 were associated with fasting glucose while PROX1 rs340874 was significantly associated with OGTT 2-h glucose (p = 0.0392∼0.0014, adjusted for age, gender and BMI), the glucose-raising allele also showed association to lower insulin secretion. IGF1 rs35767 showed significant association to both fasting and 2-h insulin levels as well as insulin secretion and sensitivity indices (p = 0.0160∼0.0035, adjusted for age, gender and BMI). CONCLUSIONS/SIGNIFICANCE Our results indicated that SNPs from GIPR, TCF7L2, DGKB, MADD, CRY2, GLIS3, PROX1, SLC30A8 and IGF1 were associated with traits related to glucose metabolism in the Chinese population.


PLOS ONE | 2010

Effects of GCK, GCKR, G6PC2 and MTNR1B Variants on Glucose Metabolism and Insulin Secretion

Cheng Hu; Rong Zhang; Congrong Wang; Weihui Yu; Jingyi Lu; Xiaojing Ma; Jie Wang; Feng Jiang; Shanshan Tang; Yuqian Bao; Kunsan Xiang; Weiping Jia

Background Single nucleotide polymorphisms (SNPs) from GCK, GCKR, G6PC2 and MTNR1B were found to modulate the fasting glucose levels. The current study aimed to replicate this association in the Chinese population and further analyze their effects on biphasic insulin secretion. Methods/Principal Findings SNPs from GCK, GCKR, G6PC2 and MTNR1B were genotyped in the Shanghai Chinese, including 3,410 type 2 diabetes patients and 3,412 controls. The controls were extensively phenotyped for the traits related to glucose metabolism and insulin secretion. We replicated the association between GCK rs1799884, G6PC2 rs16856187 and MTNR1B rs10830963 and fasting glucose in our samples (p = 0.0003∼2.0×10−8). GCK rs1799884 and G6PC2 rs16856187 showed association to HOMA-β, insulinogenic index and both first- and second-phases insulin secretion (p = 0.0030∼0.0396). MTNR1B rs10830963 was associated to HOMA-β, insulinogenic index and first-phase insulin secretion (p = 0.0102∼0.0426), but not second-phase insulin secretion (p = 0.9933). Combined effect analyses showed individuals carrying more risk allele for high fasting glucose tended to have a higher glucose levels at both fasting and 2 h during OGTTs (p = 1.7×10−13 and 0.0009, respectively), as well as lower HOMA-β, insulinogenic index and both first- and second-phases insulin secretion (p = 0.0321∼1.1×10−7). Conclusions/Significance We showed that SNPs from GCK, G6PC2 and MTNR1B modulated the fasting glucose levels in the normoglycaemic population while SNPs from G6PC2 and GCKR was associated with type 2 diabetes. Moreover, we found GCK and G6PC2 genetic variants were associated to both first- and second-phases insulin secretion while MTNR1B genetic variant was associated with first-phase insulin secretion, but not second-phase insulin secretion.


Acta Pharmacologica Sinica | 2008

Association of KCNJ11 and ABCC8 genetic polymorphisms with response to repaglinide in Chinese diabetic patients.

Ya-yi He; Rong Zhang; Shao Xy; Cheng Hu; Congrong Wang; Junxi Lu; Yuqian Bao; Weiping Jia; Kunsan Xiang

AbstractAim:The aim of this study was to investigate the association of KCNJ11 E23K and ABCC8 exon16–3T/C with the therapeutic effect of repaglinide in patients with type 2 diabetes.Methods:A total of 100 Chinese patients with newly diagnosed type 2 diabetes were treated with repaglinide for 24 weeks. Arginine stimulation tests were performed to evaluate beta cell function. Gene variations were detected with PCR-restriction fragment length polymorphism. Responders were defined by a greater than 25% decrease in fasting plasma glucose or a greater than 20% decrease in hemoglobin A1c (HbA1c) values (or both) after the 24 week repaglinide treatment.Results:Both baseline HbA1c and the decrease of HbA1c were significantly higher in patients with E/K and K/K genotypes of the KCNJ11 E23K variant when compared with E/E homozygotes (P=0.0103 and 0.0221, respectively). The decrease in 2 h postprandial plasma glucose (2hPG) was significantly greater in E/K heterozygotes than E/E homozygotes (P =0.0367). There was a significant difference in the response rate to repaglinide treatment between the E and K alleles (68% vs 82%, P =0.0324). The changes in fasting insulin and the homeostasis model assessment of insulin resistance were significantly greater in patients with ABCC8 exon16–3 C/C versus the T/C and T/T genotypes (P =0.0372 and 0.0274, respectively).Conclusion:The KCNJ11 E23K variant was associated with the therapeutic effect of repaglinide. In addition, The C/C homozygotes of the ABCC8 exon16–3T/C variant responded better to repaglinide in insulin sensitivity than the T/C and T/T genotypes.


Diabetologia | 2010

Association of genetic variants of NOS1AP with type 2 diabetes in a Chinese population.

Cheng Hu; Congrong Wang; Rong Zhang; Maggie C.Y. Ng; Yuqian Bao; W.Y. So; Ronald C.W. Ma; X. Ma; Juliana C.N. Chan; Kunsan Xiang; Weiping Jia

Aims/hypothesisChromosome 1q21-q24 has been shown to be linked to type 2 diabetes. The International Type 2 Diabetes 1q Consortium showed that one of the nominal associations was located in the NOS1AP gene. Although this association was not replicated in additional samples of European descent, it remains unknown whether NOS1AP plays a role in Chinese individuals.MethodsIn stage 1 analyses, 79 single nucleotide polymorphisms (SNPs) of the NOS1AP gene were successfully genotyped in a group of Shanghai Chinese individuals, comprising 1,691 type 2 diabetes patients and 1,720 control participants. In stage 2 analyses, the SNP showing the strongest association was genotyped in additional Chinese individuals, including 1,663 type 2 diabetes patients and 1,408 control participants.ResultsIn stage 1 analyses, 20 SNPs were nominally associated with type 2 diabetes (p < 0.05), with SNP rs12742393 showing the strongest association (OR 1.24 [95% CI 1.11–1.38]; p = 0.0002, empirical p = 0.019). Haplotype analysis also confirmed the association between rs12742393 and type 2 diabetes. In stage 2 analyses, the difference in allele frequency distribution of rs12742393 did not reach statistical significance (p = 0.254). However, the meta-analysis showed a significant association between rs12742393 and type 2 diabetes with an OR of 1.17 (95% CI 1.07–1.26; p = 0.0005).Conclusions/interpretationOur data suggest that NOS1AP variants may not play a dominant role in susceptibility to type 2 diabetes, but a minor effect cannot be excluded.

Collaboration


Dive into the Congrong Wang's collaboration.

Top Co-Authors

Avatar

Weiping Jia

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Cheng Hu

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Rong Zhang

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Yuqian Bao

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Kunsan Xiang

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Jingyi Lu

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Xiaojing Ma

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Yinan Zhang

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Weihui Yu

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Huijuan Lu

Shanghai Jiao Tong University

View shared research outputs
Researchain Logo
Decentralizing Knowledge