Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Connie B. Chang is active.

Publication


Featured researches published by Connie B. Chang.


Nature | 2008

Nanoscale double emulsions stabilized by single-component block copolypeptides

Jarrod A. Hanson; Connie B. Chang; Sara M. Graves; Zhibo Li; Thomas G. Mason; Timothy J. Deming

Water-in-oil-in-water emulsions are examples of double emulsions, in which dispersions of small water droplets within larger oil droplets are themselves dispersed in a continuous aqueous phase. Emulsions occur in many forms of processing and are used extensively by the foods, cosmetics and coatings industries. Because of their compartmentalized internal structure, double emulsions can provide advantages over simple oil-in-water emulsions for encapsulation, such as the ability to carry both polar and non-polar cargos, and improved control over release of therapeutic molecules. The preparation of double emulsions typically requires mixtures of surfactants for stability; the formation of double nanoemulsions, where both inner and outer droplets are under 100 nm, has not yet been achieved. Here we show that water-in-oil-in-water double emulsions can be prepared in a simple process and stabilized over many months using single-component, synthetic amphiphilic diblock copolypeptide surfactants. These surfactants even stabilize droplets subjected to extreme flow, leading to direct, mass production of robust double nanoemulsions that are amenable to nanostructured encapsulation applications in foods, cosmetics and drug delivery.


ACS Nano | 2008

Curvature Dependence of Viral Protein Structures on Encapsidated Nanoemulsion Droplets

Connie B. Chang; Charles M. Knobler; William M. Gelbart; Thomas G. Mason

Virus-like particles are biomimetic delivery vehicles that cloak nanoscale cores inside coatings of viral capsid proteins, offering the potential for protecting their contents and targeting them to particular tissues and cells. To date, encapsidation has been demonstrated only for a relatively limited variety of core materials, such as compressible polymers and facetted nanocrystals, over a narrow range of cores sizes and of pH and ionic strength. Here, we encapsidate spherical nanodroplets of incompressible oil stabilized by adsorbed anionic surfactant using cationic capsid protein purified from cowpea chlorotic mottle virus. By imaging with transmission electron microscopy we show that, as the droplets become larger than the wild-type RNA core, the protein is forced to self-assemble into spherical shells that are not perfect icosahedra having special triangulation numbers characteristic of the Caspar-Klug hierarchy. Consequently, the distribution of protein conformations on larger droplets is significantly different than in the wild-type shell.


Microbiology spectrum | 2015

New Technologies for Studying Biofilms

Michael J. Franklin; Connie B. Chang; Tatsuya Akiyama; Brian Bothner

Bacteria have traditionally been studied as single-cell organisms. In laboratory settings, aerobic bacteria are usually cultured in aerated flasks, where the cells are considered essentially homogenous. However, in many natural environments, bacteria and other microorganisms grow in mixed communities, often associated with surfaces. Biofilms are comprised of surface-associated microorganisms, their extracellular matrix material, and environmental chemicals that have adsorbed to the bacteria or their matrix material. While this definition of a biofilm is fairly simple, biofilms are complex and dynamic. Our understanding of the activities of individual biofilm cells and whole biofilm systems has developed rapidly, due in part to advances in molecular, analytical, and imaging tools and the miniaturization of tools designed to characterize biofilms at the enzyme level, cellular level, and systems level.


Chemical Physics Letters | 2001

Quantification of methylene blue aggregation on a fused silica surface and resolution of individual absorbance spectra

Shane M. Ohline; Sunyoung Lee; Stacie Williams; Connie B. Chang

Abstract The absorbance spectra of individual methylene blue aggregates adsorbed by spin coating on a fused silica surface are resolved. Using singular value decomposition and a model incorporating Beers Law and elemental conservation, a varied concentration family of UV–Vis spectra are fit. Results indicate that H-dimer formation occurs beginning at a surface concentration of 3×10 13 molecules/cm 2 , and further aggregate formation, including J-type dimers, is significant above 2×10 14 molecules/cm 2 . Based on our results, past assumptions that a spin-coated surface (using a millimolar coating solution) results in a monolayer of methylene blue monomers should be reexamined.


Small | 2015

Monodisperse Emulsion Drop Microenvironments for Bacterial Biofilm Growth

Connie B. Chang; James N. Wilking; Shin-Hyun Kim; Ho Cheung Shum; David A. Weitz

In this work, microfluidic technology is used to rapidly create hundreds of thousands of monodisperse double and triple emulsion drops that serve as 3D microenvironments for the containment and growth of bacterial biofilms. The size of these drops, with diameters from tens to hundreds of micrometers, makes them amenable to rapid manipulation and analysis. This is demonstrated by using microscopy to visualize cellular differentiation of Bacillus subtilis biofilm communities within each drop and the bacterial biofilm microstructure. Biofilm growth is explored upon specific interfaces in double and triple emulsions and upon negative and positive radii of curvature. Biofilm attachment of matrix and flagella mutants is studied as well as biofilms of Pseudomonas aeruginosa. This is the first demonstration of biofilms grown in microscale emulsion drops, which serve as both templates and containers for biofilm growth and attachment. These microenvironments have the potential to transform existing high-throughput screening methods for bacterial biofilms.


Langmuir | 2011

Shear-induced disruption of dense nanoemulsion gels.

James N. Wilking; Connie B. Chang; Michael Fryd; Lionel Porcar; Thomas G. Mason

The structural evolution and rheology of dense nanoemulsion gels, which have been formed by creating strong attractions between slippery nanodroplets, are explored as a function of steady shear rate using rheological small-angle neutron scattering (rheo-SANS). For applied stresses above the yield stress of the gel, the network yields, fracturing into aggregates that break and reform as they tumble and interact in the shear flow. The average aggregate size decreases with increasing shear rate; meanwhile, droplet rearrangements within the clusters, allowed by the slippery nature of the attractive interaction, increase the local density within the aggregates. At the highest shear rates, all clusters disaggregate completely into individual droplets.


Lab on a Chip | 2015

Rapid, targeted and culture-free viral infectivity assay in drop-based microfluidics

Ye Tao; Assaf Rotem; Huidan Zhang; Connie B. Chang; Anindita Basu; Abimbola O. Kolawole; Stephan A. Koehler; Yukun Ren; Jeffrey S. Lin; James M. Pipas; Andrew B. Feldman; Christiane E. Wobus; David A. Weitz

A key viral property is infectivity, and its accurate measurement is crucial for the understanding of viral evolution, disease and treatment. Currently viral infectivity is measured using plaque assays, which involve prolonged culturing of host cells, and whose measurement is unable to differentiate between specific strains and is prone to low number fluctuation. We developed a rapid, targeted and culture-free infectivity assay using high-throughput drop-based microfluidics. Single infectious viruses are incubated in a large number of picoliter drops with host cells for one viral replication cycle followed by in-drop gene-specific amplification to detect infection events. Using murine noroviruses (MNV) as a model system, we measure their infectivity and determine the efficacy of a neutralizing antibody for different variants of MNV. Our results are comparable to traditional plaque-based assays and plaque reduction neutralization tests. However, the fast, low-cost, highly accurate genomic-based assay promises to be a superior method for drug screening and isolation of resistant viral strains. Moreover our technique can be adapted to measuring the infectivity of other pathogens, such as bacteria and fungi.


Journal of Virology | 2015

Isolation and Analysis of Rare Norovirus Recombinants from Coinfected Mice Using Drop-Based Microfluidics

Huidan Zhang; Shelley K. Cockrell; Abimbola O. Kolawole; Assaf Rotem; Adrian W. R. Serohijos; Connie B. Chang; Ye Tao; Thomas S. Mehoke; Yulong Han; Jeffrey S. Lin; Nicholas S. Giacobbi; Andrew B. Feldman; Eugene I. Shakhnovich; David A. Weitz; Christiane E. Wobus; James M. Pipas

ABSTRACT Human noroviruses (HuNoVs) are positive-sense RNA viruses that can cause severe, highly infectious gastroenteritis. HuNoV outbreaks are frequently associated with recombination between circulating strains. Strain genotyping and phylogenetic analyses show that noroviruses often recombine in a highly conserved region near the junction of the viral polyprotein (open reading frame 1 [ORF1]) and capsid (ORF2) genes and occasionally within the RNA-dependent RNA polymerase (RdRP) gene. Although genotyping methods are useful for tracking changes in circulating viral populations, they report only the dominant recombinant strains and do not elucidate the frequency or range of recombination events. Furthermore, the relatively low frequency of recombination in RNA viruses has limited studies to cell culture or in vitro systems, which do not reflect the complexities and selective pressures present in an infected organism. Using two murine norovirus (MNV) strains to model coinfection, we developed a microfluidic platform to amplify, detect, and recover individual recombinants following in vitro and in vivo coinfection. One-step reverse transcriptase PCR (RT-PCR) was performed in picoliter drops with primers that identified the wild-type and recombinant progenies and scanned for recombination breakpoints at ∼1-kb intervals. We detected recombination between MNV strains at multiple loci spanning the viral protease, RdRP, and capsid ORFs and isolated individual recombinant RNA genomes that were present at a frequency of 1/300,000 or higher. This study is the first to examine norovirus recombination following coinfection of an animal and suggests that the exchange of RNA among viral genomes in an infected host occurs in multiple locations and is an important driver of genetic diversity. IMPORTANCE RNA viruses increase diversity and escape host immune barriers by genomic recombination. Studies using a number of viral systems indicate that recombination occurs via template switching by the virus-encoded RNA-dependent RNA polymerase (RdRP). However, factors that govern the frequency and positions of recombination in an infected organism remain largely unknown. This work leverages advances in the applied physics of drop-based microfluidics to isolate and sequence rare recombinants arising from the coinfection of mice with two distinct strains of murine norovirus. This study is the first to detect and analyze norovirus recombination in an animal model.


ChemBioChem | 2015

Artifact-Free Quantification and Sequencing of Rare Recombinant Viruses by Using Drop-Based Microfluidics.

Ye Tao; Assaf Rotem; Huidan Zhang; Shelley K. Cockrell; Stephan A. Koehler; Connie B. Chang; Lloyd Ung; Paul G. Cantalupo; Yukun Ren; Jeffrey S. Lin; Andrew B. Feldman; Christiane E. Wobus; James M. Pipas; David A. Weitz

Recombination is an important driver in the evolution of viruses and thus is key to understanding viral epidemics and improving strategies to prevent future outbreaks. Characterization of rare recombinant subpopulations remains technically challenging because of artifacts such as artificial recombinants, known as chimeras, and amplification bias. To overcome this, we have developed a high‐throughput microfluidic technique with a second verification step in order to amplify and sequence single recombinant viruses with high fidelity in picoliter drops. We obtained the first artifact‐free estimate of in vitro recombination rate between murine norovirus strains MNV‐1 and WU20 co‐infecting a cell (Prec=3.3×10−4±2×10−5) for a 1205 nt region. Our approach represents a time‐ and cost‐effective improvement over current methods, and can be adapted for genomic studies requiring artifact‐ and bias‐free selective amplification, such as microbial pathogens, or rare cancer cells.


Journal of Virological Methods | 2015

A high-throughput drop microfluidic system for virus culture and analysis

Audrey E. Fischer; Susan K. Wu; Jody B. Proescher; Assaf Rotem; Connie B. Chang; Huidan Zhang; Ye Tao; Thomas S. Mehoke; Peter Thielen; Abimbola O. Kolawole; Thomas J. Smith; Christiane E. Wobus; David A. Weitz; Jeffrey S. Lin; Andrew B. Feldman; Joshua T. Wolfe

High mutation rates and short replication times lead to rapid evolution in RNA viruses. New tools for high-throughput culture and analysis of viral phenotypes will enable more effective studies of viral evolutionary processes. A water-in-oil drop microfluidic system to study virus-cell interactions at the single event level on a massively parallel scale is described here. Murine norovirus (MNV-1) particles were co-encapsulated with individual RAW 264.7 cells in 65 pL aqueous drops formed by flow focusing in 50 μm microchannels. At low multiplicity of infection (MOI), viral titers increased greatly, reaching a maximum 18 h post-encapsulation. This system was employed to evaluate MNV-1 escape from a neutralizing monoclonal antibody (clone A6.2). Further, the system was validated as a means for testing escape from antibody neutralization using a series of viral point mutants. Finally, the replicative capacity of single viral particles in drops under antibody stress was tested. Under standard conditions, many RNA virus stocks harbor minority populations of genotypic and phenotypic variants, resulting in quasispecies. These data show that when single cells are encapsulated with single viral particles under antibody stress without competition from other virions, the number of resulting infectious particles is nearly equivalent to the number of viral genomes present. These findings suggest that lower fitness virions can infect cells successfully and replicate, indicating that the microfluidics system may serve as an effective tool for isolating mutants that escape evolutionary stressors.

Collaboration


Dive into the Connie B. Chang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ye Tao

Harbin Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Jeffrey S. Lin

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

James M. Pipas

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge