Connie B. Nichols
Duke University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Connie B. Nichols.
Eukaryotic Cell | 2003
James A. Fraser; Ryan Subaran; Connie B. Nichols; Joseph Heitman
ABSTRACT Cryptococcus neoformans is a human fungal pathogen that exists as three distinct varieties or sibling species: the predominantly opportunistic pathogens C. neoformans var. neoformans (serotype D) and C. neoformans var. grubii (serotype A) and the primary pathogen C. neoformans var. gattii (serotypes B and C). While serotypes A and D are cosmopolitan, serotypes B and C are typically restricted to tropical regions. However, serotype B isolates of C. neoformans var. gattii have recently caused an outbreak on Vancouver Island in Canada, highlighting the threat of this fungus and its capacity to infect immunocompetent individuals. Here we report a large-scale analysis of the mating abilities of serotype B and C isolates from diverse sources and identify unusual strains that mate robustly and are suitable for further genetic analysis. Unlike most isolates, which are of both the a and α mating types but are predominantly sterile, the majority of the Vancouver outbreak strains are exclusively of the α mating type and the majority are fertile. In an effort to enhance mating of these isolates, we identified and disrupted the CRG1 gene encoding the GTPase-activating protein involved in attenuating pheromone response. crg1 mutations dramatically increased mating efficiency and enabled mating with otherwise sterile isolates. Our studies provide a genetic and molecular foundation for further studies of this primary pathogen and reveal that the Vancouver Island outbreak may be attributable to a recent recombination event.
PLOS Pathogens | 2010
T. R. O'Meara; D. Norton; M. S. Price; C. Hay; M. F. Clements; Connie B. Nichols; J. A. Alspaugh
Cryptococcus neoformans is a prevalent human fungal pathogen that must survive within various tissues in order to establish a human infection. We have identified the C. neoformans Rim101 transcription factor, a highly conserved pH-response regulator in many fungal species. The rim101Δ mutant strain displays growth defects similar to other fungal species in the presence of alkaline pH, increased salt concentrations, and iron limitation. However, the rim101Δ strain is also characterized by a striking defect in capsule, an important virulence-associated phenotype. This capsular defect is likely due to alterations in polysaccharide attachment to the cell surface, not in polysaccharide biosynthesis. In contrast to many other C. neoformans capsule-defective strains, the rim101Δ mutant is hypervirulent in animal models of cryptococcosis. Whereas Rim101 activation in other fungal species occurs through the conserved Rim pathway, we demonstrate that C. neoformans Rim101 is also activated by the cAMP/PKA pathway. We report here that C. neoformans uses PKA and the Rim pathway to regulate the localization, activation, and processing of the Rim101 transcription factor. We also demonstrate specific host-relevant activating conditions for Rim101 cleavage, showing that C. neoformans has co-opted conserved signaling pathways to respond to the specific niche within the infected host. These results establish a novel mechanism for Rim101 activation and the integration of two conserved signaling cascades in response to host environmental conditions.
Molecular Microbiology | 2003
Robert C. Davidson; Connie B. Nichols; Gary M. Cox; John R. Perfect; Joseph Heitman
Cryptococcus neoformans is an opportunistic fungal pathogen with a defined sexual cycle in which the α allele of the mating type locus is linked to virulence and haploid differentiation. Here we analysed a conserved MAP kinase cascade composed of mating‐type specific (Ste11α, Ste12α) and non‐specific (Ste7, Cpk1) elements. Gene disruption experiments demonstrate that this specialized MAP kinase pathway is required for both mating and cell type‐specific differentiation but not for virulence. The Ste11α, Ste7 and Cpk1 kinases were found to act as a co‐ordinate signalling module, whereas the Ste12α transcription factor functions with a redundant partner or in a branched or parallel signalling pathway. Our studies illustrate how MAP kinase cascades can be constructed from cell type‐specific and non‐specific components, yielding pathways that contribute to cell type‐specific patterns of signalling and differentiation.
Eukaryotic Cell | 2002
Ping Wang; Connie B. Nichols; Klaus B. Lengeler; Maria E. Cardenas; Gary M. Cox; John R. Perfect; Joseph Heitman
ABSTRACT Cryptococcus neoformans is an opportunistic fungal pathogen with a defined sexual cycle involving fusion of haploid MATα and MATa cells. Virulence has been linked to the mating type, and MATα cells are more virulent than congenic MATa cells. To study the link between the mating type and virulence, we functionally analyzed three genes encoding homologs of the p21-activated protein kinase family: STE20α, STE20a, and PAK1. In contrast to the STE20 genes that were previously shown to be in the mating-type locus, the PAK1 gene is unlinked to the mating type. The STE20α, STE20a, and PAK1 genes were disrupted in serotype A and D strains of C. neoformans, revealing central but distinct roles in mating, differentiation, cytokinesis, and virulence. ste20α pak1 and ste20a pak1 double mutants were synthetically lethal, indicating that these related kinases share an essential function. In summary, our studies identify an association between the STE20α gene, the MATα locus, and virulence in a serotype A clinical isolate and provide evidence that PAK kinases function in a MAP kinase signaling cascade controlling the mating, differentiation, and virulence of this fungal pathogen.
Microbiology | 2002
Michael S. Waugh; Connie B. Nichols; Cameron M. DeCesare; Gary M. Cox; Joseph Heitman; J. Andrew Alspaugh
The Ras1 signal transduction pathway controls the ability of the pathogenic fungus Cryptococcus neoformans to grow at high temperatures and to mate. A second RAS gene was identified in this organism. RAS2 is expressed at a very low level compared to RAS1, and a ras2 mutation caused no alterations in vegetative growth rate, differentiation or virulence factor expression. The ras2 mutant strain was equally virulent to the wild-type strain in the murine inhalational model of cryptococcosis. Although a ras1 ras2 double mutant strain is viable, mutation of both RAS genes results in a decreased growth rate at all temperatures compared to strains with either single mutation. Overexpression of the RAS2 gene completely suppressed the ras1 mutant mating defect and partially suppressed its high temperature growth defect. After prolonged incubation at a restrictive temperature, the ras1 mutant demonstrated actin polarity defects that were also partially suppressed by RAS2 overexpression. These studies indicate that the C. neoformans Ras1 and Ras2 proteins share overlapping functions, but also play distinct signalling roles. Our findings also suggest a mechanism by which Ras1 controls growth of this pathogenic fungus at 37 degrees C, supporting a conserved role for Ras homologues in microbial cellular differentiation, morphogenesis and virulence.
Eukaryotic Cell | 2006
Steven S. Giles; Jason E. Stajich; Connie B. Nichols; Quincy D. Gerrald; J. Andrew Alspaugh; Fred S. Dietrich; John R. Perfect
ABSTRACT In the present study, we sought to elucidate the contribution of the Cryptococcus neoformans catalase gene family to antioxidant defense. We employed bioinformatics techniques to identify four members of the C. neoformans catalase gene family and created mutants lacking single or multiple catalase genes. Based on a phylogenetic analysis, CAT1 and CAT3 encode putative spore-specific catalases, CAT2 encodes a putative peroxisomal catalase, and CAT4 encodes a putative cytosolic catalase. Only Cat1 exhibited detectable biochemical activity in vitro, and Cat1 activity was constitutive in the yeast form of this organism. Although they were predicted to be important in spores, neither CAT1 nor CAT3 was essential for mating or spore viability. Consistent with previous studies of Saccharomyces cerevisiae, the single (cat1, cat2, cat3, and cat4) and quadruple (cat1 cat2 cat3cat4) catalase mutant strains exhibited no oxidative-stress phenotypes under conditions in which either exogenous or endogenous levels of reactive oxygen species were elevated. In addition, there were no significant differences in the mean times to mortality between groups of mice infected with C. neoformans catalase mutant strains (the cat1 and cat1 cat2cat3 cat4 mutants) and those infected with wild-type strain H99. We conclude from the results of this study that C. neoformans possesses a robust antioxidant system, composed of functionally overlapping and compensatory components that provide protection against endogenous and exogenous oxidative stresses.
Eukaryotic Cell | 2006
Kari L. Cramer; Quincy D. Gerrald; Connie B. Nichols; Michael S. Price; J. Andrew Alspaugh
ABSTRACT The Cryptococcus neoformans NRG1 gene was identified using gene microarrays to define putative transcription factor genes regulated by the cyclic AMP (cAMP) signal transduction pathway. Disruption of NRG1 results in delayed capsule formation and mating, two phenotypes that are directly controlled by cAMP signaling. Putative targets of the Nrg1 transcription factor were identified using a second genome microarray to define differences in the transcriptomes of the wild-type and nrg1 mutant strains. These experiments implicate Nrg1 in the transcriptional control of multiple genes involved in carbohydrate metabolism and substrate oxidation, as well as the UGD1 gene encoding a UDP-glucose dehydrogenase required for polysaccharide capsule production and cell wall integrity. In addition to being under transcriptional control of the cAMP pathway, Nrg1 contains a putative protein kinase A phosphorylation site; mutation of this motif results in reduced Nrg1 activity. Consistent with prior studies in hypocapsular mutants, the nrg1 mutant strain is attenuated in an animal model of disseminated cryptococcal disease.
Molecular Microbiology | 2007
Connie B. Nichols; Zahra H. Perfect; J. Andrew Alspaugh
Pathogenic microorganisms must precisely regulate morphogenesis to survive and proliferate within an infected host. This regulation is often controlled by conserved signal transduction pathways that direct morphological changes in varied species. One such pathway, whose components include Ras proteins and the PAK kinase Ste20, allows the human fungal pathogen Cryptococcus neoformans to grow at high temperature. Previously, we found that Ras1 signalling is required for differentiation, thermotolerance and pathogenesis in C. neoformans. We show here that the guanine nucleotide exchange factor Cdc24 is a Ras1 effector in C. neoformans to mediate the ability of this fungus to grow at high temperature and to cause disease. In addition, we provide evidence that the Ras1‐Cdc24 signalling cascade functions specifically through one of the three Cdc42/Rac1 homologues in C. neoformans. In conclusion, our studies illustrate how components of conserved signalling cascades can be specialized for different downstream functions, such as pathogenesis.
Eukaryotic Cell | 2005
Leona T. Campbell; James A. Fraser; Connie B. Nichols; Fred S. Dietrich; Dee Carter; Joseph Heitman
ABSTRACT Cryptococcus gattii is a primary pathogenic yeast that causes disease in both animals and humans. It is closely related to Cryptococcus neoformans and diverged from a common ancestor ∼40 million years ago. While C. gattii has a characterized sexual cycle dependent upon a dimorphic region of the genome known as the MAT locus, mating has rarely been observed in this species. In this study, we identify for the first time clinical (both human and veterinary) and environmental isolates from Australia that retain sexual fecundity. A collection of 120 isolates from a variety of geographic locations was analyzed for molecular type, mating type, and the ability to develop mating structures when cocultured with fertile tester strains. Nine isolates produced dikaryotic filaments with paired nuclei, fused clamp connections, and basidiospores. DNA sequence analysis of three genes (URA5, the MATα-specific SXI1α gene, and the MATa-specific SXI2a gene) revealed little or no variability in URA5 and SXI2a, respectively. However across the 108 MATα strains sequenced, the SXI1α gene was found to exist as 11 different alleles. Phylogenetic analysis found most variation to occur in the more fertile genotypes. Although some lineages of Australian C. gattii have retained the ability to mate, the majority of isolates were sterile, suggesting that asexuality is the dominant mode of propagation in these populations.
Eukaryotic Cell | 2005
Marcelo A. Vallim; Connie B. Nichols; Larissa Fernandes; Kari L. Cramer; J. Andrew Alspaugh
ABSTRACT The Cryptococcus neoformans Ras1 protein serves as a central regulator for several signaling pathways. Ras1 controls the induction of the mating pheromone response cascade as well as a distinct signaling pathway that allows this pathogenic fungus to grow at human physiological temperature. To characterize elements of the Ras1-dependent high-temperature growth pathway, we performed a multicopy suppressor screen, identifying genes whose overexpression allows the ras1 mutant to grow at 37°C. Using this genetic technique, we identified a C. neoformans gene encoding a Rac homolog that suppresses multiple ras1 mutant phenotypes. Deletion of the RAC1 gene does not affect high-temperature growth. However, a rac1 mutant strain demonstrates a profound defect in haploid filamentation as well as attenuated mating. In a yeast two-hybrid assay, Rac1 physically interacts with the PAK kinase Ste20, which similarly regulates hyphal formation in this fungus. Similar to Rac1, overexpression of the STE20α gene also restores high-temperature growth to the ras1 mutant. These results support a model in which the small G protein Rac1 acts downstream of Ras proteins and coordinately with Ste20 to control high-temperature growth and cellular differentiation in this human fungal pathogen.