Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Connie Tam is active.

Publication


Featured researches published by Connie Tam.


Journal of Clinical Investigation | 2012

Cytokeratins mediate epithelial innate defense through their antimicrobial properties

Connie Tam; James J. Mun; David J. Evans; Suzanne M. J. Fleiszig

Epithelial cells express antimicrobial proteins in response to invading pathogens, although little is known regarding epithelial defense mechanisms during healthy conditions. Here we report that epithelial cytokeratins have innate defense properties because they constitutively produce cytoprotective antimicrobial peptides. Glycine-rich C-terminal fragments derived from human cytokeratin 6A were identified in bactericidal lysate fractions of human corneal epithelial cells. Structural analysis revealed that these keratin-derived antimicrobial peptides (KDAMPs) exhibited coil structures with low α-helical content. Synthetic analogs of these KDAMPS showed rapid bactericidal activity against multiple pathogens and protected epithelial cells against bacterial virulence mechanisms, while a scrambled peptide showed no bactericidal activity. However, the bactericidal activity of a specific KDAMP was somewhat reduced by glycine-alanine substitutions. KDAMP activity involved bacterial binding and permeabilization, but the activity was unaffected by peptide charge or physiological salt concentration. Knockdown of cytokeratin 6A markedly reduced the bactericidal activity of epithelial cell lysates in vitro and increased the susceptibility of murine corneas to bacterial adherence in vivo. These data suggest that epithelial cytokeratins function as endogenous antimicrobial peptides in the host defense against infection and that keratin-derived antimicrobials may serve as effective therapeutic agents.


Investigative Ophthalmology & Visual Science | 2010

The Impact of Inoculation Parameters on the Pathogenesis of Contact Lens-Related Infectious Keratitis

Connie Tam; James J. Mun; David J. Evans; Suzanne M. J. Fleiszig

PURPOSE Contact lens wear predisposes to Pseudomonas aeruginosa keratitis, but the mechanisms involved remain unclear. An in vivo model was used to study lens inoculation conditions enabling disease. METHODS Custom-made hydrogel contact lenses were fitted to rats after incubation in P. aeruginosa approximately 10(11) cfu/mL (3 hours) or approximately 10(3) cfu/mL (24 hours). Another group was inadvertently inoculated with a suction pen previously used with high inocula, but rinsed in ethanol and stored dry (6 months). Some corneas were tissue paper-blotted to cause fluorescein staining before lens fitting. Contralateral eyes were untreated. Twenty-four hours after disease detection, lenses were transferred to naive rats or examined by confocal microscopy before homogenization to quantify viable bacteria. After lens removal, corneas were washed to collect nonadherent bacteria and were analyzed by immunohistochemistry. RESULTS All eyes challenged with unworn contaminated lenses developed keratitis after approximately 7 to 10 days. Disease delay and severity were unaffected by inoculum parameters or tissue blotting but occurred sooner with lenses transferred from infected eyes ( approximately 2 days). Worn lenses and corneal washes contained infecting bacteria. Posterior, not anterior, lens surfaces harbored P. aeruginosa biofilms that penetrated the lens matrix. Diseased corneas showed an infiltration of phagocytes and T-lymphocytes. CONCLUSIONS P. aeruginosa induces keratitis in this lens-wearing model after a single inoculation. Delayed disease onset was interesting considering the greater keratitis risk during extended wear. Infection did not require the disruption of corneal barrier function before lens wear and occurred without exposure to lens care solutions. The data suggest that keratitis involves biofilm formation or other bacterial adaptations in vivo.


Investigative Ophthalmology & Visual Science | 2011

Factors impacting corneal epithelial barrier function against Pseudomonas aeruginosa traversal.

Irania Alarcon; Connie Tam; James J. Mun; J. LeDue; David J. Evans; Suzanne M. J. Fleiszig

PURPOSE Mechanisms determining epithelial resistance versus susceptibility to microbial traversal in vivo remain poorly understood. Here, a novel murine model was used to explore factors influencing the corneal epithelial barrier to Pseudomonas aeruginosa penetration. METHODS Murine corneas were blotted with tissue paper before inoculation with green fluorescent protein-expressing P. aeruginosa. The impact of blotting on epithelial integrity was evaluated by susceptibility to fluorescein staining and histology. Using fluorescence imaging, blotted corneas were compared to nonblotted corneas for susceptibility to bacterial binding and epithelial penetration after 5 hours or were monitored for disease development. In some experiments, inoculation was performed ex vivo to exclude tear fluid or corneas were pretreated with EGTA to disrupt Ca(2+)-dependent factors. The role of surfactant protein D (SP-D), which inhibits P. aeruginosa cell invasion in vitro, was examined using knockout mice. RESULTS Blotting enabled fluorescein penetration through the epithelium into the underlying stroma without obvious disruption to corneal morphology. Although blotting enabled bacterial binding to the otherwise adhesion-resistant epithelial surface, adherent bacteria did not penetrate the surface or initiate pathology. In contrast, bacteria penetrated blotted corneas after EGTA treatment and in SP-D knockouts. Visible disease occurred and progressed only in aged, blotted, and EGTA-treated, SP-D knockout mice. CONCLUSIONS Neither fluorescein staining nor bacterial adhesion necessarily predict or enable corneal susceptibility to bacterial penetration or disease. Corneal epithelial defenses limiting traversal by adherent bacteria include EGTA-sensitive factors and SP-D. Understanding mechanisms modulating epithelial traversal by microbes could improve our understanding of susceptibility to infection and may indicate new strategies for preventing disease.


Infection and Immunity | 2009

Clearance of Pseudomonas aeruginosa from a Healthy Ocular Surface Involves Surfactant Protein D and Is Compromised by Bacterial Elastase in a Murine Null-Infection Model

James J. Mun; Connie Tam; David J. Kowbel; Samuel Hawgood; Mitchell J. Barnett; David J. Evans; Suzanne M. J. Fleiszig

ABSTRACT Our previous studies showed that surfactant protein D (SP-D) is present in human tear fluid and that it can protect corneal epithelial cells against bacterial invasion. Here we developed a novel null-infection model to test the hypothesis that SP-D contributes to the clearance of viable Pseudomonas aeruginosa from the healthy ocular surface in vivo. Healthy corneas of Black Swiss mice were inoculated with 107 or 109 CFU of invasive (PAO1) or cytotoxic (6206) P. aeruginosa. Viable counts were performed on tear fluid collected at time points ranging from 3 to 14 h postinoculation. Healthy ocular surfaces cleared both P. aeruginosa strains efficiently, even when 109 CFU was used: e.g., <0.01% of the original inoculum was recoverable after 3 h. Preexposure of eyes to bacteria did not enhance clearance. Clearance of strain 6206 (low protease producer), but not strain PAO1 (high protease producer), was delayed in SP-D gene-targeted (SP-D−/−) knockout mice. A protease mutant of PAO1 (PAO1 lasAlasBaprA) was cleared more efficiently than wild-type PAO1, but this difference was negligible in SP-D−/− mice, which were less able to clear the protease mutant. Experiments to study mechanisms for these differences revealed that purified elastase could degrade tear fluid SP-D in vivo. Together, these data show that SP-D can contribute to the clearance of P. aeruginosa from the healthy ocular surface and that proteases can compromise that clearance. The data also suggest that SP-D degradation in vivo is a mechanism by which P. aeruginosa proteases could contribute to virulence.


Infection and Immunity | 2011

Role of Defensins in Corneal Epithelial Barrier Function against Pseudomonas aeruginosa Traversal

Danielle K. Augustin; Susan R. Heimer; Connie Tam; Wing Li; Jeff M. Le Due; David J. Evans; Suzanne M. J. Fleiszig

ABSTRACT Studies have shown that epithelium-expressed antimicrobial peptides (AMPs), e.g., β-defensins, play a role in clearing bacteria from mouse corneas already infected with Pseudomonas aeruginosa. Less is known about the role of AMPs in allowing the cornea to resist infection when healthy. We previously reported that contact lens exposure, a major cause of P. aeruginosa keratitis, can inhibit the upregulation of human β-defensin 2 (hBD-2) by corneal epithelial cells in response to P. aeruginosa antigens in vitro. Here, we studied the role of AMPs in maintaining the corneal epithelial barrier to P. aeruginosa penetration using both in vitro (human) and in vivo (mouse) experiments. Results showed that preexposing human corneal epithelial multilayers to bacterial antigens in a culture supernatant (known to upregulate AMP expression) reduced epithelial susceptibility to P. aeruginosa traversal up to 6-fold (P < 0.001). Accordingly, small interfering RNA (siRNA) knockdown of any one of four AMPs expressed by human epithelia promoted P. aeruginosa traversal by more than 3-fold (P < 0.001). The combination knockdown of AMPs further enhanced susceptibility to bacterial traversal by ∼8-fold (P < 0.001). In vivo experiments showed that the loss of murine β-defensin 3 (mBD-3), a murine ortholog of hBD-2, enhanced corneal susceptibility to P. aeruginosa. The uninjured ocular surface of mBD-3−/− mice showed a reduced capacity to clear P. aeruginosa, and their corneal epithelia were more susceptible to bacterial colonization, even when inoculated ex vivo to exclude tear fluid effects. Together, these in vitro and in vivo data show functional roles for AMPs in normal corneal epithelial cell barrier function against P. aeruginosa.


Scientific Reports | 2011

Modulation of epithelial immunity by mucosal fluid.

James J. Mun; Connie Tam; David J. Evans; Suzanne M. J. Fleiszig

Mucosal epithelial cells, including those at the ocular surface, resist infection by most microbes in vivo but can be susceptible to microbial virulence in vitro. While fluids bathing mucosal surfaces (e.g. tears) contain antimicrobials, potentially pathogenic microbes often thrive in these fluids, suggesting that additional mechanisms mediate epithelial resistance in vivo. Here, tear fluid acted directly upon epithelial cells to enhance their resistance to bacterial invasion and cytotoxicity. Resistance correlated with tear fluid-magnified activation of NFκB and AP-1 transcription factors in epithelial cells in response to bacterial antigens, suggesting priming of innate defense pathways. Further analysis revealed differential regulation of potential epithelial cell defense genes by tears. siRNA knockdown confirmed involvement of at least two factors, RNase7 and ST-2, for which tears increased mRNA levels, in protection against bacterial invasion. Thus, the role of mucosal fluids in defense can include modulation of epithelial immunity, in addition to direct effects on microbes.


JAMA Ophthalmology | 2013

Association between Cytotoxic and Invasive Pseudomonas aeruginosa and Clinical Outcomes in Bacterial Keratitis

Durga S. Borkar; Suzanne M. J. Fleiszig; Chelsia Leong; Prajna Lalitha; Muthiah Srinivasan; Avanti Ghanekar; Connie Tam; Wing Li; Michael E. Zegans; Stephen D. McLeod; Thomas M. Lietman; Nisha R. Acharya

OBJECTIVES To determine whether cytotoxic and invasive Pseudomonas aeruginosa strains differentially influence clinical presentation, outcomes, or therapeutic response in bacterial keratitis. METHODS Pseudomonas aeruginosa isolates from the National Eye Institute-funded Steroids for Corneal Ulcers Trial were subtyped as cytotoxic or invasive strains. The main outcome measure compared between the 2 subtypes was change in visual acuity at 3 months using Huber robust regression, adjusting for topical corticosteroid treatment. RESULTS Of 101 confirmed P aeruginosa isolates from the Steroids for Corneal Ulcers Trial, 74 had a classically cytotoxic or invasive genotype. While corneal ulcers caused by genotypically invasive P aeruginosa strains were associated at presentation with significantly better visual acuity than corneal ulcers caused by genotypically cytotoxic P aeruginosa strains when adjusting for the effect of ulcer location (P= .008), invasive ulcers had improved significantly less than cytotoxic ulcers at 3 months (0.35; 95% CI, 0.04-0.66 logMAR; P= .03 [3.5-line difference]). Compared with topical moxifloxacin alone, adjunctive treatment with topical corticosteroids was associated with significantly more improvement in visual acuity in the invasive subgroup (P= .04) but was associated with less improvement in visual acuity in the cytotoxic subgroup (P= .07). CONCLUSIONS Rational profiling of differentially expressed virulence determinants (eg, cytotoxicity and invasiveness for P aeruginosa) could be used as a tool for decision making in the management of infections to optimize outcomes.


PLOS ONE | 2013

MicroRNA-762 is upregulated in human corneal epithelial cells in response to tear fluid and Pseudomonas aeruginosa antigens and negatively regulates the expression of host defense genes encoding RNase7 and ST2.

James J. Mun; Connie Tam; Gary Chan; Jong Hun Kim; David J. Evans; Suzanne M. J. Fleiszig

Mucosal surfaces regulate defenses against infection and excessive inflammation. We previously showed that human tears upregulated epithelial expression of genes encoding RNase7 and ST2, which inhibited Pseudomonas aeruginosa invasion of human corneal epithelial cells. Here, microRNA microarrays were used to show that a combination of tear fluid exposure (16 h) then P. aeruginosa antigens (3 h) upregulated miR-762 and miR-1207, and down-regulated miR-92 and let-7b (all > 2-fold) in human corneal epithelial cells compared to P. aeruginosa antigens alone. RT-PCR confirmed miR-762 upregulation ∼ 3-fold in tear-antigen exposed cells. Without tears or antigens, an antagomir reduced miR-762 expression relative to scrambled controls by ∼50%, increased expression of genes encoding RNase7 (∼80 %), ST2 (∼58%) and Rab5a (∼75%), without affecting P. aeruginosa internalization. However, P. aeruginosa invasion was increased > 3-fold by a miR-762 mimic which reduced RNase7 and ST2 gene expression. Tear fluid alone also induced miR-762 expression ∼ 4-fold, which was reduced by the miR-762 antagomir. Combination of tear fluid and miR-762 antagomir increased RNase7 and ST2 gene expression. These data show that mucosal fluids, such as tears, can modulate epithelial microRNA expression to regulate innate defense genes, and that miR-762 negatively regulates RNase7, ST2 and Rab5a genes. Since RNase7 and ST2 inhibit P. aeruginosa internalization, and are upregulated by tear fluid, other tear-induced mechanisms must counteract inhibitory effects of miR-762 to regulate resistance to bacteria. These data also suggest a complex relationship between tear induction of miR-762, its modulation of innate defense genes, and P. aeruginosa internalization.


PLOS ONE | 2011

3D Quantitative Imaging of Unprocessed Live Tissue Reveals Epithelial Defense against Bacterial Adhesion and Subsequent Traversal Requires MyD88

Connie Tam; J. LeDue; James J. Mun; Paul Herzmark; Ellen A. Robey; David J. Evans; Suzanne M. J. Fleiszig

While a plethora of in vivo models exist for studying infectious disease and its resolution, few enable factors involved in the maintenance of health to be studied in situ. This is due in part to a paucity of tools for studying subtleties of bacterial-host interactions at a cellular level within live organs or tissues, requiring investigators to rely on overt outcomes (e.g. pathology) in their research. Here, a suite of imaging technologies were combined to enable 3D and temporal subcellular localization and quantification of bacterial distribution within the murine cornea without the need for tissue processing or dissection. These methods were then used to demonstrate the importance of MyD88, a central adaptor protein for Toll-Like Receptor (TLR) mediated signaling, in protecting a multilayered epithelium against both adhesion and traversal by the opportunistic bacterial pathogen Pseudomonas aeruginosa ex vivo and in vivo.


Fems Immunology and Medical Microbiology | 2008

Expression of surfactant protein D in human corneal epithelial cells is upregulated by Pseudomonas aeruginosa

M. Ni; Connie Tam; Amrisha Verma; Reuben Ramphal; Samuel Hawgood; David J. Evans; Suzanne M. J. Fleiszig

We reported previously that surfactant protein D (SP-D) was present in human tears and corneal epithelial cells, and that it contributed to tear fluid protection of those cells against Pseudomonas aeruginosa invasion. This suggested a role in ocular innate immunity. Here, we explored the effects of bacterial challenge on SP-D expression by human corneal epithelial cells. Results showed that these cells produced and secreted SP-D constitutively in culture, and that production (mRNA, protein) and secretion of SP-D were upregulated after exposure to heat-killed P. aeruginosa or to purified flagellin or lipopolysaccharide. To begin exploring the mechanism for flagellin-mediated SP-D induction, cells were exposed to purified flagellin or flagellin mutated in the TLR-5-binding domain (L94A, L88A) which reduces IL-8 secretion by A549 respiratory cells. Mutated flagellin did not upregulate IL-8 expression in corneal epithelial cells, but did induce SP-D responses. Mitogen-activated protein kinase inhibitors, especially the JNK inhibitor SP600125, reduced secretion of SP-D, but not production, in the presence of P. aeruginosa. These data show that while SP-D and IL-8 corneal responses are each induced by P. aeruginosa or its antigens, they can involve different regions of the same ligand. The data suggest that separate mechanisms may regulate SP-D secretion and production by human corneal epithelia.

Collaboration


Dive into the Connie Tam's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

David J. Evans

University of California

View shared research outputs
Top Co-Authors

Avatar

James J. Mun

University of California

View shared research outputs
Top Co-Authors

Avatar

Christina Morris

Hong Kong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Jim Hackett

Hong Kong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

J. LeDue

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Irania Alarcon

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge