Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Conor Cahalane is active.

Publication


Featured researches published by Conor Cahalane.


Remote Sensing | 2015

Spatial Prediction of Coastal Bathymetry Based on Multispectral Satellite Imagery and Multibeam Data

X. Monteys; Paul Harris; Silvia Caloca; Conor Cahalane

The coastal shallow water zone can be a challenging and costly environment in which to acquire bathymetry and other oceanographic data using traditional survey methods. Much of the coastal shallow water zone worldwide remains unmapped using recent techniques and is, therefore, poorly understood. Optical satellite imagery is proving to be a useful tool in predicting water depth in coastal zones, particularly in conjunction with other standard datasets, though its quality and accuracy remains largely unconstrained. A common challenge in any prediction study is to choose a small but representative group of predictors, one of which can be determined as the best. In this respect, exploratory analyses are used to guide the make-up of this group, where we choose to compare a basic non-spatial model versus four spatial alternatives, each catering for a variety of spatial effects. Using one instance of RapidEye satellite imagery, we show that all four spatial models show better adjustments than the non-spatial model in the water depth predictions, with the best predictor yielding a correlation coefficient of actual versus predicted at 0.985. All five predictors also factor in the influence of bottom type in explaining water depth variation. However, the prediction ranges are too large to be used in high accuracy bathymetry products such as navigation charts; nevertheless, they are considered beneficial in a variety of other applications in sensitive disciplines such as environmental monitoring, seabed mapping, or coastal zone management.


Sensors | 2014

Calculation of Target-Specific Point Distribution for 2D Mobile Laser Scanners

Conor Cahalane; Conor P. McElhinney; Paul Lewis; Tim McCarthy

The current generation of Mobile Mapping Systems (MMSs) capture high density spatial data in a short time-frame. The quantity of data is difficult to predict as there is no concrete understanding of the point density that different scanner configurations and hardware settings will exhibit for objects at specific distances. Obtaining the required point density impacts survey time, processing time, data storage and is also the underlying limit of automated algorithms. This paper details a novel method for calculating point and profile information for terrestrial MMSs which are required for any point density calculation. Through application of algorithms utilising 3D surface normals and 2D geometric formulae, the theoretically optimal profile spacing and point spacing are calculated on targets. Both of these elements are a major factor in calculating point density on arbitrary objects, such as road signs, poles or buildings-all important features in asset management surveys.


international conference on computing for geospatial research applications | 2012

MIMIC: Mobile mapping point density calculator

Conor Cahalane; Tim McCarthy; Conor P. McElhinney

The current generation of Mobile Mapping Systems (MMSs) capture increasingly larger amounts of data in a short time frame. Due to the relative novelty of this technology there is no concrete understanding of the point density that different hardware configurations and operating parameters will exhibit on objects at specific distances. Depending on the project requirements, obtaining the required point density impacts on survey time, processing time, data storage and is the underlying limit of automated algorithms. A limited understanding of the capabilities of these systems means that defining point density in project specifications is a complicated process. We are in the process of developing a method for determining the quantitative resolution of point clouds collected by a MMS with respect to known objects at specified distances. We have previously demonstrated the capabilities of our system for calculating point spacing, profile angle and profile spacing individually. Each of these elements are a major factor in calculating point density on arbitrary objects, such as road signs, poles or buildings -all important features in asset management surveys. This paper will introduce the current version of the MobIle Mapping point densIty Calculator (MIMIC), MIMICs visualisation module and finally discuss the methods employed to validate our work.


Sensors | 2016

Combining Remote Temperature Sensing with in-Situ Sensing to Track Marine/Freshwater Mixing Dynamics

Margaret McCaul; Jack Barland; John Cleary; Conor Cahalane; Tim McCarthy; Dermot Diamond

The ability to track the dynamics of processes in natural water bodies on a global scale, and at a resolution that enables highly localised behaviour to be visualized, is an ideal scenario for understanding how local events can influence the global environment. While advances in in-situ chem/bio-sensing continue to be reported, costs and reliability issues still inhibit the implementation of large-scale deployments. In contrast, physical parameters like surface temperature can be tracked on a global scale using satellite remote sensing, and locally at high resolution via flyovers and drones using multi-spectral imaging. In this study, we show how a much more complete picture of submarine and intertidal groundwater discharge patterns in Kinvara Bay, Galway can be achieved using a fusion of data collected from the Earth Observation satellite (Landsat 8), small aircraft and in-situ sensors. Over the course of the four-day field campaign, over 65,000 in-situ temperatures, salinity and nutrient measurements were collected in parallel with high-resolution thermal imaging from aircraft flyovers. The processed in-situ data show highly correlated patterns between temperature and salinity at the southern end of the bay where freshwater springs can be identified at low tide. Salinity values range from 1 to 2 ppt at the southern end of the bay to 30 ppt at the mouth of the bay, indicating the presence of a freshwater wedge. The data clearly show that temperature differences can be used to track the dynamics of freshwater and seawater mixing in the inner bay region. This outcome suggests that combining the tremendous spatial density and wide geographical reach of remote temperature sensing (using drones, flyovers and satellites) with ground-truthing via appropriately located in-situ sensors (temperature, salinity, chemical, and biological) can produce a much more complete and accurate picture of the water dynamics than each modality used in isolation.


Remote Sensing | 2014

MIMIC: An Innovative Methodology for Determining Mobile Laser Scanning System Point Density

Conor Cahalane; Conor P. McElhinney; Paul Lewis; Tim McCarthy

Understanding how various Mobile Mapping System (MMS) laser hardware configurations and operating parameters exercise different influence on point density is important for assessing system performance, which in turn facilitates system design and MMS benchmarking. Point density also influences data processing, as objects that can be recognised using automated algorithms generally require a minimum point density. Although obtaining the necessary point density impacts on hardware costs, survey time and data storage requirements, a method for accurately and rapidly assessing MMS performance is lacking for generic MMSs. We have developed a method for quantifying point clouds collected by an MMS with respect to known objects at specified distances using 3D surface normals, 2D geometric formulae and line drawing algorithms. These algorithms were combined in a system called the Mobile Mapping Point Density Calculator (MIMIC) and were validated using point clouds captured by both a single scanner and a dual scanner MMS. Results from MIMIC were promising: when considering the number of scan profiles striking the target, the average error equated to less than 1 point per scan profile. These tests highlight that MIMIC is capable of accurately calculating point density for both single and dual scanner MMSs.


ISPRS international journal of geo-information | 2015

Optimising Mobile Mapping System Laser Scanner Orientation

Conor Cahalane; Paul Lewis; Conor P. McElhinney; Tim McCarthy

Multiple laser scanner hardware configurations can be applied to Mobile Mapping Systems. As best practice, laser scanners are rotated horizontally or inclined vertically to increase the probability of contact between the laser scan plane and any surfaces that are perpendicular to the direction of travel. Vertical inclinations also maximise the number of scan profiles striking narrow vertical features, something that can be of use when trying to recognise features. Adding a second scanner allows an MMS to capture more data and improve laser coverage of an area by filling in laser shadows. However, in any MMS the orientation of each scanner on the platform must be decided upon. Changes in the horizontal or vertical orientations of the scanner can increase the range to vertical targets and the road surface, with excessive scanner angles lowering point density significantly. Limited information is available to assist the manufacturers or operators in identifying the optimal scanner orientation for roadside surveys. The method proposed in this paper applies 3D surface normals and geometric formulae to assess the influence of scanner orientation on point distribution. It was demonstrated that by changing the orientation of the scanner the number of pulses striking a target could be greatly increased, and the number of profiles intersecting with the target could also be increased—something that is particularly important for narrow vertical features. The importance of identifying the correct trade-off between the number of profiles intersecting with the target and the point spacing was also raised.


Environment and Planning B: Urban Analytics and City Science | 2018

Data imputation in a short-run space-time series: A Bayesian approach

Lars Pforte; Chris Brunsdon; Conor Cahalane; Martin Charlton

This paper discusses a project on the completion of a database of socio-economic indicators across the European Union for the years from 1990 onward at various spatial scales. Thus the database consists of various time series with a spatial component. As a substantial amount of the data was missing a method of imputation was required to complete the database. A Markov Chain Monte Carlo approach was opted for. We describe the Markov Chain Monte Carlo method in detail. Furthermore, we explain how we achieved spatial coherence between different time series and their observed and estimated data points.


ISPRS international journal of geo-information | 2015

Combining 2D Mapping and Low Density Elevation Data in a GIS for GNSS Shadow Prediction

Conor Cahalane

The number of satellites visible to a Global Navigation Satellite System (GNSS) receiver is important for high accuracy surveys. To aid with this, there are software packages capable of predicting GNSS visibility at any location of the globe at any time of day. These prediction packages operate by using regularly updated almanacs containing positional data for all navigation satellites; however, one issue that restricts their use is that most packages assume that there are no obstructions on the horizon. In an attempt to improve this, certain planning packages are now capable of modelling simple obstructions whereby portions of the horizon visible from one location can be blocked out, thereby simulating buildings or other vertical structures. While this is useful for static surveys, it is not applicable for dynamic surveys when the GNSS receiver is in motion. This problem has been tackled in the past by using detailed, high-accuracy building models and designing novel methods for modelling satellite positions using GNSS almanacs, which is a time-consuming and costly approach. The solution proposed in this paper is to use a GIS to combine existing, freely available GNSS prediction software to predict pseudo satellite locations, incorporate a 2.5D model of the buildings in an area created with national mapping agency 2D vector mapping and low density elevation data to minimise the need for a full survey, thereby providing savings in terms of cost and time. Following this, the ESRI ArcMap viewshed tool was used to ascertain what areas exhibit poor GNSS visibility due to obstructions over a wide area, and an accuracy assessment of the procedure was made.


Archive | 2010

Initial Results From European Road Safety Inspection (eursi) Mobile Mapping Project

Conor P. McElhinney; Pankaj Kumar; Conor Cahalane; Tim McCarthy


Archive | 2010

Mobile mapping system performance - an analysis of the effect of laser scanner configuration and vehicle velocity on scan profiles

Conor Cahalane; Conor P. McElhinney; Tim McCarthy

Collaboration


Dive into the Conor Cahalane's collaboration.

Top Co-Authors

Avatar

Tim McCarthy

University of Wollongong

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge