Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Conor R. Caffrey is active.

Publication


Featured researches published by Conor R. Caffrey.


Nature | 2009

The genome of the blood fluke Schistosoma mansoni

Matthew Berriman; Brian J. Haas; Philip T. LoVerde; R. Alan Wilson; Gary P. Dillon; Gustavo C. Cerqueira; Susan T. Mashiyama; Bissan Al-Lazikani; Luiza F. Andrade; Peter D. Ashton; Martin Aslett; Daniella Castanheira Bartholomeu; Gaëlle Blandin; Conor R. Caffrey; Avril Coghlan; Richard M. R. Coulson; Tim A. Day; Arthur L. Delcher; Ricardo DeMarco; Appoliniare Djikeng; Tina Eyre; John Gamble; Elodie Ghedin; Yong-Hong Gu; Christiane Hertz-Fowler; Hirohisha Hirai; Yuriko Hirai; Robin Houston; Alasdair Ivens; David A. Johnston

Schistosoma mansoni is responsible for the neglected tropical disease schistosomiasis that affects 210 million people in 76 countries. Here we present analysis of the 363 megabase nuclear genome of the blood fluke. It encodes at least 11,809 genes, with an unusual intron size distribution, and new families of micro-exon genes that undergo frequent alternative splicing. As the first sequenced flatworm, and a representative of the Lophotrochozoa, it offers insights into early events in the evolution of the animals, including the development of a body pattern with bilateral symmetry, and the development of tissues into organs. Our analysis has been informed by the need to find new drug targets. The deficits in lipid metabolism that make schistosomes dependent on the host are revealed, and the identification of membrane receptors, ion channels and more than 300 proteases provide new insights into the biology of the life cycle and new targets. Bioinformatics approaches have identified metabolic chokepoints, and a chemogenomic screen has pinpointed schistosome proteins for which existing drugs may be active. The information generated provides an invaluable resource for the research community to develop much needed new control tools for the treatment and eradication of this important and neglected disease.


PLOS Medicine | 2007

Schistosomiasis Mansoni: Novel Chemotherapy Using a Cysteine Protease Inhibitor

Maha-Hamadien Abdulla; Kee-Chong Lim; Mohammed Sajid; James H. McKerrow; Conor R. Caffrey

Background Schistosomiasis is a chronic, debilitating parasitic disease infecting more than 200 million people and is second only to malaria in terms of public health importance. Due to the lack of a vaccine, patient therapy is heavily reliant on chemotherapy with praziquantel as the World Health Organization–recommended drug, but concerns over drug resistance encourage the search for new drug leads. Methods and Findings The efficacy of the vinyl sulfone cysteine protease inhibitor K11777 was tested in the murine model of schistosomiasis mansoni. Disease parameters measured were worm and egg burdens, and organ pathology including hepato- and splenomegaly, presence of parasite egg–induced granulomas in the liver, and levels of circulating alanine aminotransferase activity as a marker of hepatocellular function. K11777 (25 mg/kg twice daily [BID]), administered intraperitoneally at the time of parasite migration through the skin and lungs (days 1–14 postinfection [p.i.]), resulted in parasitologic cure (elimination of parasite eggs) in five of seven cases and a resolution of other disease parameters. K11777 (50 mg/kg BID), administered at the commencement of egg-laying by mature parasites (days 30–37 p.i.), reduced worm and egg burdens, and ameliorated organ pathology. Using protease class-specific substrates and active-site labeling, one molecular target of K11777 was identified as the gut-associated cathepsin B1 cysteine protease, although other cysteine protease targets are not excluded. In rodents, dogs, and primates, K11777 is nonmutagenic with satisfactory safety and pharmacokinetic profiles. Conclusions The significant reduction in parasite burden and pathology by this vinyl sulfone cysteine protease inhibitor validates schistosome cysteine proteases as drug targets and offers the potential of a new direction for chemotherapy of human schistosomiasis.


Journal of Biological Chemistry | 2006

A Multienzyme Network Functions in Intestinal Protein Digestion by a Platyhelminth Parasite

Melaine Delcroix; Mohammed Sajid; Conor R. Caffrey; Kee-C. Lim; Jan Dvořák; Ivy Hsieh; Mahmoud Bahgat; Colette Dissous; James H. McKerrow

Proteases frequently function not only as individual enzymes but also in cascades or networks. A notable evolutionary switch occurred in one such protease network that is involved in protein digestion in the intestine. In vertebrates, this is largely the work of trypsin family serine proteases, whereas in invertebrates, cysteine proteases of the papain family and aspartic proteases assume the role. Utilizing a combination of protease class-specific inhibitors and RNA interference, we deconvoluted such a network of major endopeptidases functioning in invertebrate intestinal protein digestion, using the parasitic helminth, Schistosoma mansoni as an experimental model. We show that initial degradation of host blood proteins is ordered, occasionally redundant, and substrate-specific. Although inhibition of parasite cathepsin D had a greater effect on primary cleavage of hemoglobin, inhibition of cathepsin B predominated in albumin degradation. Nevertheless, in both cases, inhibitor combinations were synergistic. An asparaginyl endopeptidase (legumain) also synergized with cathepsin B and L in protein digestion, either by zymogen activation or facilitating substrate cleavage. This protease network operates optimally in acidic pH compartments either in the gut lumen or in vacuoles of the intestinal lining cells. Defining the role of each of these major enzymes now provides a clearer understanding of the function of a complex protease network that is conserved throughout invertebrate evolution. It also provides insights into which of these proteases are logical targets for development of chemotherapy for schistosomiasis, a major global health problem.


Acta Tropica | 2011

From innovation to application: Social-ecological context, diagnostics, drugs and integrated control of schistosomiasis

Jürg Utzinger; Eliézer K. N'Goran; Conor R. Caffrey; Jennifer Keiser

Compared to malaria, tuberculosis and HIV/AIDS, schistosomiasis remains a truly neglected tropical disease. Schistosomiasis, perhaps more than any other disease, is entrenched in prevailing social-ecological systems, since transmission is governed by human behaviour (e.g. open defecation and patterns of unprotected surface water contacts) and ecological features (e.g. living in close proximity to suitable freshwater bodies in which intermediate host snails proliferate). Moreover, schistosomiasis is intimately linked with poverty and the disease has spread to previously non-endemic areas as a result of demographic, ecological and engineering transformations. Importantly though, thanks to increased advocacy there is growing awareness, financial and technical support to control and eventually eliminate schistosomiasis as a public health problem at local, regional and global scales. The purpose of this review is to highlight recent progress made in innovation, validation and application of new tools and strategies for research and integrated control of schistosomiasis. First, we explain that schistosomiasis is deeply embedded in social-ecological systems and explore linkages with poverty. We then summarize and challenge global statistics, risk maps and burden estimates of human schistosomiasis. Discovery and development research pertaining to novel diagnostics and drugs forms the centrepiece of our review. We discuss unresolved issues and emerging opportunities for integrated and sustainable control of schistosomiasis and conclude with a series of research needs.


Journal of Biological Chemistry | 2009

Vinyl Sulfones as Antiparasitic Agents and a Structural Basis for Drug Design

Iain D. Kerr; Ji Hyun Lee; Christopher J. Farady; Rachael Marion; Mathias Rickert; Mohammed Sajid; Kailash C. Pandey; Conor R. Caffrey; Jennifer Legac; Elizabeth Hansell; James H. McKerrow; Charles S. Craik; Philip J. Rosenthal; Linda S. Brinen

Cysteine proteases of the papain superfamily are implicated in a number of cellular processes and are important virulence factors in the pathogenesis of parasitic disease. These enzymes have therefore emerged as promising targets for antiparasitic drugs. We report the crystal structures of three major parasite cysteine proteases, cruzain, falcipain-3, and the first reported structure of rhodesain, in complex with a class of potent, small molecule, cysteine protease inhibitors, the vinyl sulfones. These data, in conjunction with comparative inhibition kinetics, provide insight into the molecular mechanisms that drive cysteine protease inhibition by vinyl sulfones, the binding specificity of these important proteases and the potential of vinyl sulfones as antiparasitic drugs.


PLOS Neglected Tropical Diseases | 2009

Drug Discovery for Schistosomiasis: Hit and Lead Compounds Identified in a Library of Known Drugs by Medium-Throughput Phenotypic Screening

Maha Hamadien Abdulla; Debbie S. Ruelas; Brian Wolff; June Snedecor; Kee Chong Lim; Fengyun Xu; Adam R. Renslo; Janice Williams; James H. McKerrow; Conor R. Caffrey

Background Praziquantel (PZQ) is the only widely available drug to treat schistosomiasis. Given the potential for drug resistance, it is prudent to search for novel therapeutics. Identification of anti-schistosomal chemicals has traditionally relied on phenotypic (whole organism) screening with adult worms in vitro and/or animal models of disease—tools that limit automation and throughput with modern microtiter plate-formatted compound libraries. Methods A partially automated, three-component phenotypic screen workflow is presented that utilizes at its apex the schistosomular stage of the parasite adapted to a 96-well plate format with a throughput of 640 compounds per month. Hits that arise are subsequently screened in vitro against adult parasites and finally for efficacy in a murine model of disease. Two GO/NO GO criteria filters in the workflow prioritize hit compounds for tests in the animal disease model in accordance with a target drug profile that demands short-course oral therapy. The screen workflow was inaugurated with 2,160 chemically diverse natural and synthetic compounds, of which 821 are drugs already approved for human use. This affords a unique starting point to ‘reposition’ (re-profile) drugs as anti-schistosomals with potential savings in development timelines and costs. Findings Multiple and dynamic phenotypes could be categorized for schistosomula and adults in vitro, and a diverse set of ‘hit’ drugs and chemistries were identified, including anti-schistosomals, anthelmintics, antibiotics, and neuromodulators. Of those hits prioritized for tests in the animal disease model, a number of leads were identified, one of which compares reasonably well with PZQ in significantly decreasing worm and egg burdens, and disease-associated pathology. Data arising from the three components of the screen are posted online as a community resource. Conclusions To accelerate the identification of novel anti-schistosomals, we have developed a partially automated screen workflow that interfaces schistosomula with microtiter plate-formatted compound libraries. The workflow has identified various compounds and drugs as hits in vitro and leads, with the prescribed oral efficacy, in vivo. Efforts to improve throughput, automation, and rigor of the screening workflow are ongoing.


Molecular and Biochemical Parasitology | 2003

Functional expression and characterization of Schistosoma mansoni cathepsin B and its trans-activation by an endogenous asparaginyl endopeptidase.

Mohammed Sajid; James H. McKerrow; Elizabeth Hansell; Mary A. Mathieu; Kimberley D. Lucas; Ivy Hsieh; Doron C. Greenbaum; Matthew Bogyo; Jason P. Salter; Kee C. Lim; Christopher S. Franklin; Jea-Hyoun Kim; Conor R. Caffrey

Peptidases are essential for the establishment and survival of the medically important parasite, Schistosoma mansoni. This helminth expresses a number of gut-associated peptidases that degrade host blood proteins, including hemoglobin, as a means of nutrition. Using irreversible affinity probes, we demonstrate that S. mansoni cathepsin B-like endopeptidase 1 (SmCB1) is the most abundant papain family cysteine peptidase in both the parasite gut and somatic extracts. SmCB1 zymogen (SmCB1pm) was functionally expressed in Pichia pastoris (4-11mgl(-1)). Monospecific and immunoselected antibodies raised against SmCB1pm localized the enzyme exclusively to the gut lumen and surrounding gastrodermis of adult worms. Recombinant SmCB1pm was unable to catalyze its activation, even at low pH. However, recombinant S. mansoni asparaginyl endopeptidase (SmAE), another gut-associated cysteine peptidase, processed and activated SmCB1pm in trans. Consistent with the known specificity of AEs, processing occurred on the carboxyl side of an asparagine residue, two residues upstream of the start of the mature SmCB1 sequence. The remaining pro-region dipeptide was removed by rat cathepsin C (dipeptidyl-peptidase I)-an action conceivably performed by an endogenous cathepsin C in vivo. The activated recombinant SmCB1 is biochemically identical to the native enzyme with respect to dipeptidyl substrate kinetics and pH profiles. Also, the serum proteins, hemoglobin, serum albumin, IgG, and alpha-2 macroglobulin were efficiently degraded. Further, a novel application of an assay to measure the peptidyl carboxypeptidase activity of SmCB1 and other cathepsins B was developed using the synthetic substrate benzoyl-glycinyl-histidinyl-leucine (Bz-Gly-His-Leu). This study characterizes the major digestive cysteine peptidase in schistosomes and defines novel trans-processing events required to activate the SmCB1 zymogen in vitro which may facilitate the digestive process in vivo.


Chemistry & Biology | 2009

Hemoglobin Digestion in Blood-Feeding Ticks: Mapping a Multipeptidase Pathway by Functional Proteomics

Martin Horn; Martina Nussbaumerová; Miloslav Šanda; Zuzana Kovářová; Jindřich Srba; Zdeněk Franta; Daniel Sojka; Matthew Bogyo; Conor R. Caffrey; Petr Kopáček; Michael Mareš

Hemoglobin digestion is an essential process for blood-feeding parasites. Using chemical tools, we deconvoluted the intracellular hemoglobinolytic cascade in the tick Ixodes ricinus, a vector of Lyme disease and tick-borne encephalitis. In tick gut tissue, a network of peptidases was demonstrated through imaging with specific activity-based probes and activity profiling with peptidic substrates and inhibitors. This peptidase network is induced upon blood feeding and degrades hemoglobin at acidic pH. Selective inhibitors were applied to dissect the roles of the individual peptidases and to determine the peptidase-specific cleavage map of the hemoglobin molecule. The degradation pathway is initiated by endopeptidases of aspartic and cysteine class (cathepsin D supported by cathepsin L and legumain) and is continued by cysteine amino- and carboxy-dipeptidases (cathepsins C and B). The identified enzymes are potential targets to developing novel anti-tick vaccines.


PLOS ONE | 2009

A comparative chemogenomics strategy to predict potential drug targets in the metazoan pathogen, Schistosoma mansoni.

Conor R. Caffrey; Andreas Rohwer; Frank Oellien; Richard J. Marhöfer; Simon Braschi; Guilherme Oliveira; James H. McKerrow; Paul M. Selzer

Schistosomiasis is a prevalent and chronic helmintic disease in tropical regions. Treatment and control relies on chemotherapy with just one drug, praziquantel and this reliance is of concern should clinically relevant drug resistance emerge and spread. Therefore, to identify potential target proteins for new avenues of drug discovery we have taken a comparative chemogenomics approach utilizing the putative proteome of Schistosoma mansoni compared to the proteomes of two model organisms, the nematode, Caenorhabditis elegans and the fruitfly, Drosophila melanogaster. Using the genome comparison software Genlight, two separate in silico workflows were implemented to derive a set of parasite proteins for which gene disruption of the orthologs in both the model organisms yielded deleterious phenotypes (e.g., lethal, impairment of motility), i.e., are essential genes/proteins. Of the 67 and 68 sequences generated for each workflow, 63 were identical in both sets, leading to a final set of 72 parasite proteins. All but one of these were expressed in the relevant developmental stages of the parasite infecting humans. Subsequent in depth manual curation of the combined workflow output revealed 57 candidate proteins. Scrutiny of these for ‘druggable’ protein homologs in the literature identified 35 S. mansoni sequences, 18 of which were homologous to proteins with 3D structures including co-crystallized ligands that will allow further structure-based drug design studies. The comparative chemogenomics strategy presented generates a tractable set of S. mansoni proteins for experimental validation as drug targets against this insidious human pathogen.


PLOS Neglected Tropical Diseases | 2010

RNA interference in Schistosoma mansoni schistosomula: selectivity, sensitivity and operation for larger-scale screening.

Saša Štefanić; Jan Dvořák; Martin Horn; Simon Braschi; Daniel Sojka; Debbie S. Ruelas; Brian M. Suzuki; Kee-Chong Lim; Stephanie D. Hopkins; James H. McKerrow; Conor R. Caffrey

Background The possible emergence of resistance to the only available drug for schistosomiasis spurs drug discovery that has been recently incentivized by the availability of improved transcriptome and genome sequence information. Transient RNAi has emerged as a straightforward and important technique to interrogate that information through decreased or loss of gene function and identify potential drug targets. To date, RNAi studies in schistosome stages infecting humans have focused on single (or up to 3) genes of interest. Therefore, in the context of standardizing larger RNAi screens, data are limited on the extent of possible off-targeting effects, gene-to-gene variability in RNAi efficiency and the operational capabilities and limits of RNAi. Methodology/Principal Findings We investigated in vitro the sensitivity and selectivity of RNAi using double-stranded (ds)RNA (approximately 500 bp) designed to target 11 Schistosoma mansoni genes that are expressed in different tissues; the gut, tegument and otherwise. Among the genes investigated were 5 that had been previously predicted to be essential for parasite survival. We employed mechanically transformed schistosomula that are relevant to parasitism in humans, amenable to screen automation and easier to obtain in greater numbers than adult parasites. The operational parameters investigated included defined culture media for optimal parasite maintenance, transfection strategy, time- and dose- dependency of RNAi, and dosing limits. Of 7 defined culture media tested, Basch Medium 169 was optimal for parasite maintenance. RNAi was best achieved by co-incubating parasites and dsRNA (standardized to 30 µg/ml for 6 days); electroporation provided no added benefit. RNAi, including interference of more than one transcript, was selective to the gene target(s) within the pools of transcripts representative of each tissue. Concentrations of dsRNA above 90 µg/ml were directly toxic. RNAi efficiency was transcript-dependent (from 40 to >75% knockdown relative to controls) and this may have contributed to the lack of obvious phenotypes observed, even after prolonged incubations of 3 weeks. Within minutes of their mechanical preparation from cercariae, schistosomula accumulated fluorescent macromolecules in the gut indicating that the gut is an important route through which RNAi is expedited in the developing parasite. Conclusions Transient RNAi operates gene-selectively in S. mansoni newly transformed schistosomula yet the sensitivity of individual gene targets varies. These findings and the operational parameters defined will facilitate larger RNAi screens.

Collaboration


Dive into the Conor R. Caffrey's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jan Dvořák

Czech University of Life Sciences Prague

View shared research outputs
Top Co-Authors

Avatar

Martin Horn

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Mareš

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Daniel Sojka

Academy of Sciences of the Czech Republic

View shared research outputs
Researchain Logo
Decentralizing Knowledge