Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Conrad C. Weihl is active.

Publication


Featured researches published by Conrad C. Weihl.


Nature | 2013

Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS

Hong Joo Kim; Nam Chul Kim; Yong-Dong Wang; Emily A. Scarborough; Jennifer C. Moore; Zamia Diaz; Kyle S. MacLea; Brian D. Freibaum; Songqing Li; Amandine Molliex; A. Kanagaraj; Robert A. Carter; Kevin B. Boylan; Aleksandra Wojtas; Rosa Rademakers; Jack L. Pinkus; Steven A. Greenberg; John Q. Trojanowski; Bryan J. Traynor; Bradley Smith; Simon Topp; Athina-Soragia Gkazi; John Miller; Christopher Shaw; Michael Kottlors; Janbernd Kirschner; Alan Pestronk; Yun R. Li; Alice Flynn Ford; Aaron D. Gitler

Algorithms designed to identify canonical yeast prions predict that around 250 human proteins, including several RNA-binding proteins associated with neurodegenerative disease, harbour a distinctive prion-like domain (PrLD) enriched in uncharged polar amino acids and glycine. PrLDs in RNA-binding proteins are essential for the assembly of ribonucleoprotein granules. However, the interplay between human PrLD function and disease is not understood. Here we define pathogenic mutations in PrLDs of heterogeneous nuclear ribonucleoproteins (hnRNPs) A2B1 and A1 in families with inherited degeneration affecting muscle, brain, motor neuron and bone, and in one case of familial amyotrophic lateral sclerosis. Wild-type hnRNPA2 (the most abundant isoform of hnRNPA2B1) and hnRNPA1 show an intrinsic tendency to assemble into self-seeding fibrils, which is exacerbated by the disease mutations. Indeed, the pathogenic mutations strengthen a ‘steric zipper’ motif in the PrLD, which accelerates the formation of self-seeding fibrils that cross-seed polymerization of wild-type hnRNP. Notably, the disease mutations promote excess incorporation of hnRNPA2 and hnRNPA1 into stress granules and drive the formation of cytoplasmic inclusions in animal models that recapitulate the human pathology. Thus, dysregulated polymerization caused by a potent mutant steric zipper motif in a PrLD can initiate degenerative disease. Related proteins with PrLDs should therefore be considered candidates for initiating and perhaps propagating proteinopathies of muscle, brain, motor neuron and bone.


Journal of Cell Biology | 2009

Valosin-containing protein (VCP) is required for autophagy and is disrupted in VCP disease

Jeong Sun Ju; Rodrigo A. Fuentealba; Sara E. Miller; Erin Jackson; David Piwnica-Worms; Robert H. Baloh; Conrad C. Weihl

Accumulation of autophagosomes because of impaired autophagy during valosin-containing protein (VCP)–linked dementia is explained by the absence or reduced activity of VCP.


Journal of Neurology, Neurosurgery, and Psychiatry | 2008

TDP-43 accumulation in inclusion body myopathy muscle suggests a common pathogenic mechanism with frontotemporal dementia

Conrad C. Weihl; Peyker Temiz; Sara E. Miller; Giles D. J. Watts; Charles D. Smith; Phyllis I. Hanson; Virginia E. Kimonis; Alan Pestronk

TAR DNA binding protein-43 (TDP-43) is found in ubiquitinated inclusions (UBIs) in some frontotemporal dementias (FTD-U). One form of FTD-U, due to mutations in the valosin containing protein (VCP) gene, occurs with an inclusion body myopathy (IBMPFD). Since IBMPFD brain has TDP-43 in UBIs, we looked for TDP-43 inclusions in IBMPFD muscle. In normal muscle, TDP-43 is present in nuclei. In IBMPFD muscle, TDP-43 is additionally present as large inclusions within UBIs in muscle cytoplasm. TDP-43 inclusions were also found in 78% of sporadic inclusion body myositis (sIBM) muscles. In IBMPFD and sIBM muscle, TDP-43 migrated with an additional band on immunoblot similar to that reported in FTD-U brains. This study adds sIBM and hereditary inclusion body myopathies to the growing list of TDP-43 positive inclusion diseases.


Neuromuscular Disorders | 2009

Valosin-containing protein disease: Inclusion body myopathy with Paget’s disease of the bone and fronto-temporal dementia

Conrad C. Weihl; Alan Pestronk; Virginia E. Kimonis

Mutations in valosin-containing protein (VCP) cause inclusion body myopathy (IBM) associated with Pagets disease of the bone (PDB) and fronto-temporal dementia (FTD) or IBMPFD. Although IBMPFD is a multisystem disorder, muscle weakness is the presenting symptom in greater than half of patients and an isolated symptom in 30%. Patients with the full spectrum of the disease make up only 12% of those affected; therefore it is important to consider and recognize IBMPFD in a neuromuscular clinic. The current review describes the skeletal muscle phenotype and common muscle histochemical features in IBMPFD. In addition to myopathic features; vacuolar changes and tubulofilamentous inclusions are found in a subset of patients. The most consistent findings are VCP, ubiquitin and TAR DNA-binding protein 43 (TDP-43) positive inclusions. VCP is a ubiquitously expressed multifunctional protein that is a member of the AAA+ (ATPase associated with various activities) protein family. It has been implicated in multiple cellular functions ranging from organelle biogenesis to protein degradation. Although the role of VCP in skeletal muscle is currently unknown, it is clear that VCP mutations lead to the accumulation of ubiquitinated inclusions and protein aggregates in patient tissue, transgenic animals and in vitro systems. We suggest that IBMPFD is novel type of protein surplus myopathy. Instead of accumulating a poorly degraded and aggregated mutant protein as seen in some myofibrillar and nemaline myopathies, VCP mutations disrupt its normal role in protein homeostasis resulting in the accumulation of ubiquitinated and aggregated proteins that are deleterious to skeletal muscle.


Journal of Cell Science | 2014

The VCP/p97 system at a glance: connecting cellular function to disease pathogenesis

Hemmo Meyer; Conrad C. Weihl

ABSTRACT The ATPase valosin-containing protein (VCP)/p97 has emerged as a central and important element of the ubiquitin system. Together with a network of cofactors, it regulates an ever-expanding range of processes that stretch into almost every aspect of cellular physiology. Its main role in proteostasis and key functions in signaling pathways are of relevance to degenerative diseases and genomic stability. In this Cell Science at a Glance and the accompanying poster, we give a brief overview of this complex system. In addition, we discuss the pathogenic basis for VCP/p97-associated diseases and then highlight in more detail new exciting links to the translational stress response and RNA biology that further underscore the significance of the VCP/p97 system.


Human Molecular Genetics | 2010

Inclusion body myopathy, Paget's disease of the bone and fronto-temporal dementia: a disorder of autophagy

Jeong-Sun Ju; Conrad C. Weihl

Inclusion body myopathy associated with Pagets disease of the bone and fronto-temporal dementia (IBMPFD) is a progressive autosomal dominant disorder caused by mutations in p97/VCP (valosin-containing protein). p97/VCP is a member of the AAA+ (ATPase associated with a variety of activities) protein family and participates in multiple cellular processes. One particularly important role for p97/VCP is facilitating intracellular protein degradation. p97/VCP has traditionally been thought to mediate the ubiquitin-proteasome degradation of proteins; however, recent studies challenge this dogma. p97/VCP clearly participates in the degradation of aggregate-prone proteins, a process principally mediated by autophagy. In addition, IBMPFD mutations in p97/VCP lead to accumulation of autophagic structures in patient and transgenic animal tissue. This is likely due to a defect in p97/VCP-mediated autophagosome maturation. The following review will discuss the evidence for p97/VCP in autophagy and how a disruption in this process contributes to IBMPFD pathogenesis.


Journal of Biological Chemistry | 2010

Interaction with Polyglutamine Aggregates Reveals a Q/N-rich Domain in TDP-43

Rodrigo A. Fuentealba; Maria Udan; Shaughn Bell; Iga Wegorzewska; Jieya Shao; Marc I. Diamond; Conrad C. Weihl; Robert H. Baloh

The identification of pathologic TDP-43 aggregates in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration, followed by the discovery of dominantly inherited point mutations in TDP-43 in familial ALS, have been critical insights into the mechanism of these untreatable neurodegenerative diseases. However, the biochemical basis of TDP-43 aggregation and the mechanism of how mutations in TDP-43 lead to disease remain enigmatic. In efforts to understand how TDP-43 alters its cellular localization in response to proteotoxic stress, we found that TDP-43 is sequestered into polyglutamine aggregates. Furthermore, we found that binding to polyglutamine aggregates requires a previously uncharacterized glutamine/asparagine (Q/N)-rich region in the C-terminal domain of TDP-43. Sequestration into polyglutamine aggregates causes TDP-43 to be cleared from the nucleus and become detergent-insoluble. Finally, we observed that sequestration into polyglutamine aggregates led to loss of TDP-43-mediated splicing in the nucleus and that polyglutamine toxicity could be partially rescued by increasing expression of TDP-43. These data indicate pathologic sequestration into polyglutamine aggregates, and loss of nuclear TDP-43 function may play an unexpected role in polyglutamine disease pathogenesis. Furthermore, as Q/N domains have a strong tendency to self-aggregate and in some cases can function as prions, the identification of a Q/N domain in TDP-43 has important implications for the mechanism of pathologic aggregation of TDP-43 in ALS and other neurodegenerative diseases.


Nature Cell Biology | 2011

Endolysosomal sorting of ubiquitylated caveolin-1 is regulated by VCP and UBXD1 and impaired by VCP disease mutations

Danilo Ritz; Maja Vuk; Philipp Kirchner; Monika Bug; Sabina Schütz; Arnold Hayer; Sebastian Bremer; Caleb Lusk; Robert H. Baloh; Houkeun Lee; Timo Glatter; Matthias Gstaiger; Ruedi Aebersold; Conrad C. Weihl; Hemmo Meyer

The AAA-ATPase VCP (also known as p97) cooperates with distinct cofactors to process ubiquitylated proteins in different cellular pathways. VCP missense mutations cause a systemic degenerative disease in humans, but the molecular pathogenesis is unclear. We used an unbiased mass spectrometry approach and identified a VCP complex with the UBXD1 cofactor, which binds to the plasma membrane protein caveolin-1 (CAV1) and whose formation is specifically disrupted by disease-associated mutations. We show that VCP–UBXD1 targets mono-ubiquitylated CAV1 in SDS-resistant high-molecular-weight complexes on endosomes, which are en route to degradation in endolysosomes. Expression of VCP mutant proteins, chemical inhibition of VCP, or siRNA-mediated depletion of UBXD1 leads to a block of CAV1 transport at the limiting membrane of enlarged endosomes in cultured cells. In patient muscle, muscle-specific caveolin-3 accumulates in sarcoplasmic pools and specifically delocalizes from the sarcolemma. These results extend the cellular functions of VCP to mediating sorting of ubiquitylated cargo in the endocytic pathway and indicate that impaired trafficking of caveolin may contribute to pathogenesis in individuals with VCP mutations.


Journal of Biological Chemistry | 2008

Impaired Protein Aggregate Handling and Clearance Underlie the Pathogenesis of p97/VCP-associated Disease

Jeong-Sun Ju; Sara E. Miller; Phyllis I. Hanson; Conrad C. Weihl

Mutations in p97/VCP cause the multisystem disease inclusion body myopathy, Paget disease of the bone and frontotemporal dementia (IBMPFD). p97/VCP is a member of the AAA+ (ATPase associated with a variety of activities) protein family and has been implicated in multiple cellular processes. One pathologic feature in IBMPFD is ubiquitinated inclusions, suggesting that mutations in p97/VCP may affect protein degradation. The present study shows that IBMPFD mutant expression increases ubiquitinated proteins and susceptibility to proteasome inhibition. Co-expression of an aggregate prone protein such as expanded polyglutamine in IBMPFD mutant cells results in an increase in aggregated protein that localizes to small inclusions instead of a single perinuclear aggresome. These small inclusions fail to co-localize with autophagic machinery. IBMPFD mutants avidly bind to these small inclusions and may not allow them to traffic to an aggresome. This is rescued by HDAC6, a p97/VCP-binding protein that facilitates the autophagic degradation of protein aggregates. Expression of HDAC6 improves aggresome formation and protects IBMPFD mutant cells from polyglutamine-induced cell death. Our study emphasizes the importance of protein aggregate trafficking to inclusion bodies in degenerative diseases and the therapeutic benefit of inclusion body formation.


Annals of Neurology | 2012

Exome sequencing reveals DNAJB6 mutations in dominantly-inherited myopathy

Matthew B. Harms; R. Brian Sommerville; Peggy Allred; Shaughn Bell; Duanduan Ma; Paul R. Cooper; Glenn Lopate; Alan Pestronk; Conrad C. Weihl; Robert H. Baloh

To identify the causative gene in an autosomal dominant limb‐girdle muscular dystrophy (LGMD) with skeletal muscle vacuoles.

Collaboration


Dive into the Conrad C. Weihl's collaboration.

Top Co-Authors

Avatar

Alan Pestronk

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Robert H. Baloh

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar

Sara K. Pittman

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Sara E. Miller

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Matthew B. Harms

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Glenn Lopate

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James Kain Ching

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Jeong-Sun Ju

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Phyllis I. Hanson

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge