Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Conrad Leonard is active.

Publication


Featured researches published by Conrad Leonard.


Nature | 2015

Whole genomes redefine the mutational landscape of pancreatic cancer

Nicola Waddell; Marina Pajic; Ann-Marie Patch; David K. Chang; Karin S. Kassahn; Peter Bailey; Amber L. Johns; David Miller; Katia Nones; Kelly Quek; Michael Quinn; Alan Robertson; Muhammad Z.H. Fadlullah; Timothy J. C. Bruxner; Angelika N. Christ; Ivon Harliwong; Senel Idrisoglu; Suzanne Manning; Craig Nourse; Ehsan Nourbakhsh; Shivangi Wani; Peter J. Wilson; Emma Markham; Nicole Cloonan; Matthew J. Anderson; J. Lynn Fink; Oliver Holmes; Stephen Kazakoff; Conrad Leonard; Felicity Newell

Pancreatic cancer remains one of the most lethal of malignancies and a major health burden. We performed whole-genome sequencing and copy number variation (CNV) analysis of 100 pancreatic ductal adenocarcinomas (PDACs). Chromosomal rearrangements leading to gene disruption were prevalent, affecting genes known to be important in pancreatic cancer (TP53, SMAD4, CDKN2A, ARID1A and ROBO2) and new candidate drivers of pancreatic carcinogenesis (KDM6A and PREX2). Patterns of structural variation (variation in chromosomal structure) classified PDACs into 4 subtypes with potential clinical utility: the subtypes were termed stable, locally rearranged, scattered and unstable. A significant proportion harboured focal amplifications, many of which contained druggable oncogenes (ERBB2, MET, FGFR1, CDK6, PIK3R3 and PIK3CA), but at low individual patient prevalence. Genomic instability co-segregated with inactivation of DNA maintenance genes (BRCA1, BRCA2 or PALB2) and a mutational signature of DNA damage repair deficiency. Of 8 patients who received platinum therapy, 4 of 5 individuals with these measures of defective DNA maintenance responded.


Nature | 2015

Whole–genome characterization of chemoresistant ovarian cancer

Ann-Marie Patch; Elizabeth L. Christie; Dariush Etemadmoghadam; Dale W. Garsed; Joshy George; Sian Fereday; Katia Nones; Prue Cowin; Kathryn Alsop; Peter Bailey; Karin S. Kassahn; Felicity Newell; Michael Quinn; Stephen Kazakoff; Kelly Quek; Charlotte Wilhelm-Benartzi; Ed Curry; Huei San Leong; Anne Hamilton; Linda Mileshkin; George Au-Yeung; Catherine Kennedy; Jillian Hung; Yoke-Eng Chiew; Paul Harnett; Michael Friedlander; Jan Pyman; Stephen M. Cordner; Patricia O’Brien; Jodie Leditschke

Patients with high-grade serous ovarian cancer (HGSC) have experienced little improvement in overall survival, and standard treatment has not advanced beyond platinum-based combination chemotherapy, during the past 30 years. To understand the drivers of clinical phenotypes better, here we use whole-genome sequencing of tumour and germline DNA samples from 92 patients with primary refractory, resistant, sensitive and matched acquired resistant disease. We show that gene breakage commonly inactivates the tumour suppressors RB1, NF1, RAD51B and PTEN in HGSC, and contributes to acquired chemotherapy resistance. CCNE1 amplification was common in primary resistant and refractory disease. We observed several molecular events associated with acquired resistance, including multiple independent reversions of germline BRCA1 or BRCA2 mutations in individual patients, loss of BRCA1 promoter methylation, an alteration in molecular subtype, and recurrent promoter fusion associated with overexpression of the drug efflux pump MDR1.


Nature | 2017

Whole-genome landscapes of major melanoma subtypes

Nicholas K. Hayward; James S. Wilmott; Nicola Waddell; Peter A. Johansson; Matthew A. Field; Katia Nones; Ann Marie Patch; Hojabr Kakavand; Ludmil B. Alexandrov; Hazel Burke; Valerie Jakrot; Stephen Kazakoff; Oliver Holmes; Conrad Leonard; Radhakrishnan Sabarinathan; Loris Mularoni; Scott Wood; Qinying Xu; Nick Waddell; Varsha Tembe; Gulietta M. Pupo; Ricardo De Paoli-Iseppi; Ricardo E. Vilain; Ping Shang; Loretta Lau; Rebecca A. Dagg; Sarah-Jane Schramm; Antonia L. Pritchard; Ken Dutton-Regester; Felicity Newell

Melanoma of the skin is a common cancer only in Europeans, whereas it arises in internal body surfaces (mucosal sites) and on the hands and feet (acral sites) in people throughout the world. Here we report analysis of whole-genome sequences from cutaneous, acral and mucosal subtypes of melanoma. The heavily mutated landscape of coding and non-coding mutations in cutaneous melanoma resolved novel signatures of mutagenesis attributable to ultraviolet radiation. However, acral and mucosal melanomas were dominated by structural changes and mutation signatures of unknown aetiology, not previously identified in melanoma. The number of genes affected by recurrent mutations disrupting non-coding sequences was similar to that affected by recurrent mutations to coding sequences. Significantly mutated genes included BRAF, CDKN2A, NRAS and TP53 in cutaneous melanoma, BRAF, NRAS and NF1 in acral melanoma and SF3B1 in mucosal melanoma. Mutations affecting the TERT promoter were the most frequent of all; however, neither they nor ATRX mutations, which correlate with alternative telomere lengthening, were associated with greater telomere length. Most melanomas had potentially actionable mutations, most in components of the mitogen-activated protein kinase and phosphoinositol kinase pathways. The whole-genome mutation landscape of melanoma reveals diverse carcinogenic processes across its subtypes, some unrelated to sun exposure, and extends potential involvement of the non-coding genome in its pathogenesis.


Nature Communications | 2014

Genomic catastrophes frequently arise in esophageal adenocarcinoma and drive tumorigenesis

Katia Nones; Nicola Waddell; Nicci Wayte; Ann-Marie Patch; Peter Bailey; Felicity Newell; Oliver Holmes; J. Lynn Fink; Michael Quinn; Yue Hang Tang; Guy Lampe; Kelly Quek; Kelly A. Loffler; Suzanne Manning; Senel Idrisoglu; David Miller; Qinying Xu; Nick Waddell; Peter Wilson; Timothy J. C. Bruxner; Angelika N. Christ; Ivon Harliwong; Craig Nourse; Ehsan Nourbakhsh; Matthew Anderson; Stephen Kazakoff; Conrad Leonard; Scott Wood; Peter T. Simpson; Lynne Reid

Oesophageal adenocarcinoma (EAC) incidence is rapidly increasing in Western countries. A better understanding of EAC underpins efforts to improve early detection and treatment outcomes. While large EAC exome sequencing efforts to date have found recurrent loss-of-function mutations, oncogenic driving events have been underrepresented. Here we use a combination of whole-genome sequencing (WGS) and single-nucleotide polymorphism-array profiling to show that genomic catastrophes are frequent in EAC, with almost a third (32%, n = 40/123) undergoing chromothriptic events. WGS of 22 EAC cases show that catastrophes may lead to oncogene amplification through chromothripsis-derived double-minute chromosome formation (MYC and MDM2) or breakage-fusion-bridge (KRAS, MDM2 and RFC3). Telomere shortening is more prominent in EACs bearing localized complex rearrangements. Mutational signature analysis also confirms that extreme genomic instability in EAC can be driven by somatic BRCA2 mutations. These findings suggest that genomic catastrophes have a significant role in the malignant transformation of EAC.


International Journal of Cancer | 2014

Genome-wide DNA methylation patterns in pancreatic ductal adenocarcinoma reveal epigenetic deregulation of SLIT-ROBO, ITGA2 and MET signaling

Katia Nones; Nic Waddell; Sarah Song; Ann Marie Patch; David Miller; Amber L. Johns; Jianmin Wu; Karin S. Kassahn; David L. A. Wood; Peter Bailey; Lynn Fink; Suzanne Manning; Angelika N. Christ; Craig Nourse; Stephen Kazakoff; Darrin Taylor; Conrad Leonard; David K. Chang; Marc D. Jones; Michelle Thomas; Clare Watson; Mark Pinese; Mark J. Cowley; Ilse Rooman; Marina Pajic; Giovanni Butturini; Anna Malpaga; Vincenzo Corbo; Stefano Crippa; Massimo Falconi

The importance of epigenetic modifications such as DNA methylation in tumorigenesis is increasingly being appreciated. To define the genome‐wide pattern of DNA methylation in pancreatic ductal adenocarcinomas (PDAC), we captured the methylation profiles of 167 untreated resected PDACs and compared them to a panel of 29 adjacent nontransformed pancreata using high‐density arrays. A total of 11,634 CpG sites associated with 3,522 genes were significantly differentially methylated (DM) in PDAC and were capable of segregating PDAC from non‐malignant pancreas, regardless of tumor cellularity. As expected, PDAC hypermethylation was most prevalent in the 5′ region of genes (including the proximal promoter, 5′UTR and CpG islands). Approximately 33% DM genes showed significant inverse correlation with mRNA expression levels. Pathway analysis revealed an enrichment of aberrantly methylated genes involved in key molecular mechanisms important to PDAC: TGF‐β, WNT, integrin signaling, cell adhesion, stellate cell activation and axon guidance. Given the recent discovery that SLIT‐ROBO mutations play a clinically important role in PDAC, the role of epigenetic perturbation of axon guidance was pursued in more detail. Bisulfite amplicon deep sequencing and qRT‐PCR expression analyses confirmed recurrent perturbation of axon guidance pathway genes SLIT2, SLIT3, ROBO1, ROBO3, ITGA2 and MET and suggests epigenetic suppression of SLIT‐ROBO signaling and up‐regulation of MET and ITGA2 expression. Hypomethylation of MET and ITGA2 correlated with high gene expression, which was associated with poor survival. These data suggest that aberrant methylation plays an important role in pancreatic carcinogenesis affecting core signaling pathways with potential implications for the disease pathophysiology and therapy.


PLOS ONE | 2012

qpure: A Tool to Estimate Tumor Cellularity from Genome-Wide Single-Nucleotide Polymorphism Profiles

Sarah Song; Katia Nones; David Miller; Ivon Harliwong; Karin S. Kassahn; Mark Pinese; Marina Pajic; Anthony J. Gill; Amber L. Johns; Matthew Anderson; Oliver Holmes; Conrad Leonard; Darrin Taylor; Scott Wood; Qinying Xu; Felicity Newell; Mark J. Cowley; Jianmin Wu; Peter Wilson; Lynn Fink; Andrew V. Biankin; Nic Waddell; Sean M. Grimmond; John V. Pearson

Tumour cellularity, the relative proportion of tumour and normal cells in a sample, affects the sensitivity of mutation detection, copy number analysis, cancer gene expression and methylation profiling. Tumour cellularity is traditionally estimated by pathological review of sectioned specimens; however this method is both subjective and prone to error due to heterogeneity within lesions and cellularity differences between the sample viewed during pathological review and tissue used for research purposes. In this paper we describe a statistical model to estimate tumour cellularity from SNP array profiles of paired tumour and normal samples using shifts in SNP allele frequency at regions of loss of heterozygosity (LOH) in the tumour. We also provide qpure, a software implementation of the method. Our experiments showed that there is a medium correlation 0.42 (-value = 0.0001) between tumor cellularity estimated by qpure and pathology review. Interestingly there is a high correlation 0.87 (-value 2.2e-16) between cellularity estimates by qpure and deep Ion Torrent sequencing of known somatic KRAS mutations; and a weaker correlation 0.32 (-value = 0.004) between IonTorrent sequencing and pathology review. This suggests that qpure may be a more accurate predictor of tumour cellularity than pathology review. qpure can be downloaded from https://sourceforge.net/projects/qpure/.


Gastroenterology | 2017

Hypermutation In Pancreatic Cancer

Jeremy L. Humphris; Ann-Marie Patch; Katia Nones; Peter Bailey; Amber L. Johns; Skye McKay; David K. Chang; David Miller; Marina Pajic; Karin S. Kassahn; Michael Quinn; Timothy J. C. Bruxner; Angelika N. Christ; Ivon Harliwong; Senel Idrisoglu; Suzanne Manning; Craig Nourse; Ehsan Nourbakhsh; Andrew Stone; Peter J. Wilson; Matthew Anderson; J. Lynn Fink; Oliver Holmes; Stephen Kazakoff; Conrad Leonard; Felicity Newell; Nick Waddell; Scott Wood; Ronald S. Mead; Qinying Xu

Pancreatic cancer is molecularly diverse, with few effective therapies. Increased mutation burden and defective DNA repair are associated with response to immune checkpoint inhibitors in several other cancer types. We interrogated 385 pancreatic cancer genomes to define hypermutation and its causes. Mutational signatures inferring defects in DNA repair were enriched in those with the highest mutation burdens. Mismatch repair deficiency was identified in 1% of tumors harboring different mechanisms of somatic inactivation of MLH1 and MSH2. Defining mutation load in individual pancreatic cancers and the optimal assay for patient selection may inform clinical trial design for immunotherapy in pancreatic cancer.


The Journal of Pathology | 2015

Integrated genomic and transcriptomic analysis of human brain metastases identifies alterations of potential clinical significance

Jodi M. Saunus; Michael Quinn; Ann-Marie Patch; John V. Pearson; Peter Bailey; Katia Nones; Amy E. McCart Reed; David Miller; Peter Wilson; Fares Al-Ejeh; Mythily Mariasegaram; Queenie Lau; Teresa Withers; Rosalind L. Jeffree; Lynne Reid; Leonard Da Silva; Admire Matsika; Colleen Niland; Margaret C. Cummings; Timothy J. C. Bruxner; Angelika N. Christ; Ivon Harliwong; Senel Idrisoglu; Suzanne Manning; Craig Nourse; Ehsan Nourbakhsh; Shivangi Wani; Matthew J. Anderson; J. Lynn Fink; Oliver Holmes

Treatment options for patients with brain metastases (BMs) have limited efficacy and the mortality rate is virtually 100%. Targeted therapy is critically under‐utilized, and our understanding of mechanisms underpinning metastatic outgrowth in the brain is limited. To address these deficiencies, we investigated the genomic and transcriptomic landscapes of 36 BMs from breast, lung, melanoma and oesophageal cancers, using DNA copy‐number analysis and exome‐ and RNA‐sequencing. The key findings were as follows. (a) Identification of novel candidates with possible roles in BM development, including the significantly mutated genes DSC2, ST7, PIK3R1 and SMC5, and the DNA repair, ERBB–HER signalling, axon guidance and protein kinase‐A signalling pathways. (b) Mutational signature analysis was applied to successfully identify the primary cancer type for two BMs with unknown origins. (c) Actionable genomic alterations were identified in 31/36 BMs (86%); in one case we retrospectively identified ERBB2 amplification representing apparent HER2 status conversion, then confirmed progressive enrichment for HER2‐positivity across four consecutive metastatic deposits by IHC and SISH, resulting in the deployment of HER2‐targeted therapy for the patient. (d) In the ERBB/HER pathway, ERBB2 expression correlated with ERBB3 (r2 = 0.496; p < 0.0001) and HER3 and HER4 were frequently activated in an independent cohort of 167 archival BM from seven primary cancer types: 57.6% and 52.6% of cases were phospho‐HER3Y1222 or phospho‐HER4Y1162 membrane‐positive, respectively. The HER3 ligands NRG1/2 were barely detectable by RNAseq, with NRG1 (8p12) genomic loss in 63.6% breast cancer‐BMs, suggesting a microenvironmental source of ligand. In summary, this is the first study to characterize the genomic landscapes of BM. The data revealed novel candidates, potential clinical applications for genomic profiling of resectable BMs, and highlighted the possibility of therapeutically targeting HER3, which is broadly over‐expressed and activated in BMs, independent of primary site and systemic therapy. Copyright


PLOS ONE | 2013

Somatic Point Mutation Calling in Low Cellularity Tumors

Karin S. Kassahn; Oliver Holmes; Katia Nones; Ann-Marie Patch; David Miller; Angelika N. Christ; Ivon Harliwong; Timothy J. C. Bruxner; Qinying Xu; Matthew Anderson; Scott Wood; Conrad Leonard; Darrin Taylor; Felicity Newell; Sarah Song; Senel Idrisoglu; Craig Nourse; Ehsan Nourbakhsh; Suzanne Manning; Shivangi Wani; Anita L Steptoe; Marina Pajic; Mark J. Cowley; Mark Pinese; David K. Chang; Anthony J. Gill; Amber L. Johns; Jianmin Wu; Peter Wilson; Lynn Fink

Somatic mutation calling from next-generation sequencing data remains a challenge due to the difficulties of distinguishing true somatic events from artifacts arising from PCR, sequencing errors or mis-mapping. Tumor cellularity or purity, sub-clonality and copy number changes also confound the identification of true somatic events against a background of germline variants. We have developed a heuristic strategy and software (http://www.qcmg.org/bioinformatics/qsnp/) for somatic mutation calling in samples with low tumor content and we show the superior sensitivity and precision of our approach using a previously sequenced cell line, a series of tumor/normal admixtures, and 3,253 putative somatic SNVs verified on an orthogonal platform.


Genome Medicine | 2017

Lost in translation: returning germline genetic results in genome-scale cancer research.

Amber L. Johns; Skye McKay; Jeremy L. Humphris; Mark Pinese; Lorraine A. Chantrill; R. Scott Mead; Katherine L. Tucker; Lesley Andrews; Annabel Goodwin; Conrad Leonard; Hilda High; Katia Nones; Ann-Marie Patch; Neil D. Merrett; Nick Pavlakis; Karin S. Kassahn; Jaswinder S. Samra; David Miller; David K. Chang; Marina Pajic; John V. Pearson; Sean M. Grimmond; Nicola Waddell; Nikolajs Zeps; Anthony J. Gill; Andrew V. Biankin

BackgroundThe return of research results (RoR) remains a complex and well-debated issue. Despite the debate, actual data related to the experience of giving individual results back, and the impact these results may have on clinical care and health outcomes, is sorely lacking. Through the work of the Australian Pancreatic Cancer Genome Initiative (APGI) we: (1) delineate the pathway back to the patient where actionable research data were identified; and (2) report the clinical utilisation of individual results returned. Using this experience, we discuss barriers and opportunities associated with a comprehensive process of RoR in large-scale genomic research that may be useful for others developing their own policies.MethodsWe performed whole-genome (n = 184) and exome (n = 208) sequencing of matched tumour-normal DNA pairs from 392 patients with sporadic pancreatic cancer (PC) as part of the APGI. We identified pathogenic germline mutations in candidate genes (n = 130) with established predisposition to PC or medium–high penetrance genes with well-defined cancer associated syndromes or phenotypes. Variants from candidate genes were annotated and classified according to international guidelines. Variants were considered actionable if clinical utility was established, with regard to prevention, diagnosis, prognostication and/or therapy.ResultsA total of 48,904 germline variants were identified, with 2356 unique variants undergoing annotation and in silico classification. Twenty cases were deemed actionable and were returned via previously described RoR framework, representing an actionable finding rate of 5.1%. Overall, 1.78% of our cohort experienced clinical benefit from RoR.ConclusionReturning research results within the context of large-scale genomics research is a labour-intensive, highly variable, complex operation. Results that warrant action are not infrequent, but the prevalence of those who experience a clinical difference as a result of returning individual results is currently low.

Collaboration


Dive into the Conrad Leonard's collaboration.

Top Co-Authors

Avatar

Katia Nones

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Oliver Holmes

QIMR Berghofer Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Ann-Marie Patch

QIMR Berghofer Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Miller

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Stephen Kazakoff

QIMR Berghofer Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Craig Nourse

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Ivon Harliwong

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

John V. Pearson

QIMR Berghofer Medical Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge