Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Conrad Wagner is active.

Publication


Featured researches published by Conrad Wagner.


Clinical Research and Regulatory Affairs | 2001

BIOCHEMICAL ROLE OF FOLATE IN CELLULAR METABOLISM

Conrad Wagner

As described in the previous chapter, natural folate compounds exist in tissues as polyglutamates. These serve to keep the folates within the cell since only the monoglutamate forms are transported...


Hepatology | 2007

Loss of the glycine N‐methyltransferase gene leads to steatosis and hepatocellular carcinoma in mice

M. Luz Martínez-Chantar; Mercedes Vazquez-Chantada; Usue Ariz; Nuria Martínez; Marta Varela; Zigmund Luka; Antonieta Capdevila; Juan Rodríguez; Ana M. Aransay; Rune Matthiesen; Heping Yang; Diego F. Calvisi; Manel Esteller; Mario F. Fraga; Shelly C. Lu; Conrad Wagner; José M. Mato

Glycine N‐methyltransferase (GNMT) is the main enzyme responsible for catabolism of excess hepatic S‐adenosylmethionine (SAMe). GNMT is absent in hepatocellular carcinoma (HCC), messenger RNA (mRNA) levels are significantly lower in livers of patients at risk of developing HCC, and GNMT has been proposed to be a tumor‐susceptibility gene for liver cancer. The identification of several children with liver disease as having mutations of the GNMT gene further suggests that this enzyme plays an important role in liver function. In the current study we studied development of liver pathologies including HCC in GNMT‐knockout (GNMT‐KO) mice. GNMT‐KO mice have elevated serum aminotransferase, methionine, and SAMe levels and develop liver steatosis, fibrosis, and HCC. We found that activation of the Ras and Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathways was increased in liver tumors from GNMT‐KO mice coincidently with the suppression of the Ras inhibitors Ras‐association domain family/tumor suppressor (RASSF) 1 and 4 and the JAK/STAT inhibitors suppressor of cytokine signaling (SOCS) 1–3 and cytokine‐inducible SH2‐protein. Finally, we found that methylation of RASSF1 and SOCS2 promoters and the binding of trimethylated lysine 27 in histone 3 to these 2 genes was increased in HCC from GNMT‐KO mice. Conclusion: These data demonstrate that loss of GNMT induces aberrant methylation of DNA and histones, resulting in epigenetic modulation of critical carcinogenic pathways in mice. (HEPATOLOGY 2008.)


The Plant Cell | 2003

Regulation of Methylbenzoate Emission after Pollination in Snapdragon and Petunia Flowers

Florence Negre; Christine M. Kish; Jennifer Boatright; Beverly A. Underwood; Kenichi Shibuya; Conrad Wagner; David G. Clark; Natalia Dudareva

The molecular mechanisms responsible for postpollination changes in floral scent emission were investigated in snapdragon cv Maryland True Pink and petunia cv Mitchell flowers using a volatile ester, methylbenzoate, one of the major scent compounds emitted by these flowers, as an example. In both species, a 70 to 75% pollination-induced decrease in methylbenzoate emission begins only after pollen tubes reach the ovary, a process that takes between 35 and 40 h in snapdragon and ∼32 h in petunia. This postpollination decrease in emission is not triggered by pollen deposition on the stigma. Petunia and snapdragon both synthesize methylbenzoate from benzoic acid and S-adenosyl-l-methionine (SAM); however, they use different mechanisms to downregulate its production after pollination. In petunia, expression of the gene responsible for methylbenzoate synthesis is suppressed by ethylene. In snapdragon, the decrease in methylbenzoate emission is the result of a decrease in both S-adenosyl-l-methionine:benzoic acid carboxyl methyltransferase (BAMT) activity and the ratio of SAM to S-adenosyl-l-homocysteine (“methylation index”) after pollination, although the BAMT gene also is sensitive to ethylene.


Proceedings of the National Academy of Sciences of the United States of America | 2004

S-adenosylhomocysteine hydrolase deficiency in a human: A genetic disorder of methionine metabolism

Ivo Barić; Ksenija Fumić; B. Glenn; Mario Ćuk; Andreas Schulze; James D. Finkelstein; S. Jill James; Vlatka Mejaški-Bošnjak; Leo Pažanin; Igor P. Pogribny; Marko Radoš; Vladimir Sarnavka; Mira Šćukanec-Špoljar; Robert H. Allen; Sally P. Stabler; Lidija Uzelac; Oliver Vugrek; Conrad Wagner; Steven H. Zeisel; S. Harvey Mudd

We report studies of a Croatian boy, a proven case of human S-adenosylhomocysteine (AdoHcy) hydrolase deficiency. Psychomotor development was slow until his fifth month; thereafter, virtually absent until treatment was started. He had marked hypotonia with elevated serum creatine kinase and transaminases, prolonged prothrombin time and low albumin. Electron microscopy of muscle showed numerous abnormal myelin figures; liver biopsy showed mild hepatitis with sparse rough endoplasmic reticulum. Brain MRI at 12.7 months revealed white matter atrophy and abnormally slow myelination. Hypermethioninemia was present in the initial metabolic study at age 8 months, and persisted (up to 784 μM) without tyrosine elevation. Plasma total homocysteine was very slightly elevated for an infant to 14.5–15.9 μM. In plasma, S-adenosylmethionine was 30-fold and AdoHcy 150-fold elevated. Activity of AdoHcy hydrolase was ≈3% of control in liver and was 5–10% of the control values in red blood cells and cultured fibroblasts. We found no evidence of a soluble inhibitor of the enzyme in extracts of the patients cultured fibroblasts. Additional pretreatment abnormalities in plasma included low concentrations of phosphatidylcholine and choline, with elevations of guanidinoacetate, betaine, dimethylglycine, and cystathionine. Leukocyte DNA was hypermethylated. Gene analysis revealed two mutations in exon 4: a maternally derived stop codon, and a paternally derived missense mutation. We discuss reasons for biochemical abnormalities and pathophysiological aspects of AdoHcy hydrolase deficiency.


Plant Physiology | 2002

Adenosine Kinase Deficiency Is Associated with Developmental Abnormalities and Reduced Transmethylation

Barbara A. Moffatt; Yvonne Y. Stevens; Mike S. Allen; Jamie D. Snider; Luiz A. Pereira; Margarita I. Todorova; Peter S. Summers; Elizabeth A. Weretilnyk; Luke Martin-McCaffrey; Conrad Wagner

Adenosine (Ado) kinase (ADK; ATP:Ado 5′ phosphotransferase, EC 2.7.1.20) catalyzes the salvage synthesis of adenine monophosphate from Ado and ATP. In Arabidopsis, ADK is encoded by two cDNAs that share 89% nucleotide identity and are constitutively, yet differentially, expressed in leaves, stems, roots, and flowers. To investigate the role of ADK in plant metabolism, lines deficient in this enzyme activity have been created by sense and antisense expression of the ADK1 cDNA. The levels of ADK activity in these lines range from 7% to 70% of the activity found in wild-type Arabidopsis. Transgenic plants with 50% or more of the wild-type activity have a normal morphology. In contrast, plants with less than 10% ADK activity are small with rounded, wavy leaves and a compact, bushy appearance. Because of the lack of elongation of the primary shoot, the siliques extend in a cluster from the rosette. Fertility is decreased because the stamen filaments do not elongate normally; hypocotyl and root elongation are reduced also. The hydrolysis of S-adenosyl-l-homo-cysteine (SAH) produced from S-adenosyl-l-methionine (SAM)-dependent methylation reactions is a key source of Ado in plants. The lack of Ado salvage in the ADK-deficient lines leads to an increase in the SAH level and results in the inhibition of SAM-dependent transmethylation. There is a direct correlation between ADK activity and the level of methylesterified pectin in seed mucilage, as monitored by staining with ruthenium red, immunofluorescence labeling, or direct assay. These results indicate that Ado must be steadily removed by ADK to prevent feedback inhibition of SAH hydrolase and maintain SAM utilization and recycling.


Journal of Inherited Metabolic Disease | 2001

Glycine N-methyltransferase deficiency: A novel inborn error causing persistent isolated hypermethioninaemia

S. H. Mudd; Roberto Cerone; M. C. Schiaffino; A. R. Fantasia; G. Minniti; U. Caruso; R. Lorini; David Watkins; N. Matiaszuk; David S. Rosenblatt; B. Schwahn; Rima Rozen; L. LeGros; M. Kotb; Antonieta Capdevila; Zigmund Luka; James D. Finkelstein; Albert Tangerman; Sally P. Stabler; Robert H. Allen; Conrad Wagner

This paper reports clinical and metabolic studies of two Italian siblings with a novel form of persistent isolated hypermethioninaemia, i.e. abnormally elevated plasma methionine that lasted beyond the first months of life and is not due to cystathionine β-synthase deficiency, tyrosinaemia I or liver disease. Abnormal elevations of their plasma S-adenosylmethionine (AdoMet) concentrations proved they do not have deficient activity of methionine adenosyltransferase I/III. A variety of studies provided evidence that the elevations of methionine and AdoMet are not caused by defects in the methionine transamination pathway, deficient activity of methionine adenosyltransferase II, a mutation in methylenetetrahydrofolate reductase rendering this activity resistant to inhibition by AdoMet, or deficient activity of guanidinoacetate methyltransferase. Plasma sarcosine (N-methylglycine) is elevated, together with elevated plasma AdoMet in normal subjects following oral methionine loads and in association with increased plasma levels of both methionine and AdoMet in cystathionine β-synthase-deficient individuals. However, plasma sarcosine is not elevated in these siblings. The latter result provides evidence they are deficient in activity of glycine N-methyltransferase (GNMT). The only clinical abnormalities in these siblings are mild hepatomegaly and chronic elevation of serum transaminases not attributable to conventional causes of liver disease. A possible causative connection between GNMT deficiency and these hepatitis-like manifestations is discussed. Further studies are required to evaluate whether dietary methionine restriction will be useful in this situation.


The Plant Cell | 2005

The Arabidopsis HOMOLOGY-DEPENDENT GENE SILENCING1 Gene Codes for an S-Adenosyl-l-Homocysteine Hydrolase Required for DNA Methylation-Dependent Gene Silencing

Pedro S.C.F. Rocha; Mazhar Sheikh; Rosalba Melchiorre; Mathilde Fagard; Stéphanie Boutet; Rebecca Loach; Barbara A. Moffatt; Conrad Wagner; Hervé Vaucheret; Ian J. Furner

Genes introduced into higher plant genomes can become silent (gene silencing) and/or cause silencing of homologous genes at unlinked sites (homology-dependent gene silencing or HDG silencing). Mutations of the HOMOLOGY-DEPENDENT GENE SILENCING1 (HOG1) locus relieve transcriptional gene silencing and methylation-dependent HDG silencing and result in genome-wide demethylation. The hog1 mutant plants also grow slowly and have low fertility and reduced seed germination. Three independent mutants of HOG1 were each found to have point mutations at the 3′ end of a gene coding for S-adenosyl-l-homocysteine (SAH) hydrolase, and hog1-1 plants show reduced SAH hydrolase activity. A transposon (hog1-4) and a T-DNA tag (hog1-5) in the HOG1 gene each behaved as zygotic embryo lethal mutants and could not be made homozygous. The results suggest that the homozygous hog1 point mutants are leaky and result in genome demethylation and poor growth and that homozygous insertion mutations result in zygotic lethality. Complementation of the hog1-1 point mutation with a T-DNA containing the gene coding for SAH hydrolase restored gene silencing, HDG silencing, DNA methylation, fast growth, and normal seed viability. The same T-DNA also complemented the zygotic embryo lethal phenotype of the hog1-4 tagged mutant. A model relating the HOG1 gene, DNA methylation, and methylation-dependent HDG silencing is presented.


Journal of Biological Chemistry | 2009

Glycine N-methyltransferase and regulation of S-adenosylmethionine levels

Zigmund Luka; S. Harvey Mudd; Conrad Wagner

Methylation is a major biological process. It has been shown to be important in formation of compounds such as phosphatidylcholine, creatine, and many others and also participates in epigenetic effects through methylation of histones and DNA. The donor of methyl groups for almost all cellular methylation reactions is S-adenosylmethionine. It seems that the level of S-adenosylmethionine must be regulated in response to developmental stages and metabolic changes, and the enzyme glycine N-methyltransferase has been shown to play a major role in such regulation in mammals. This minireview will focus on the latest discoveries in the elucidation of the mechanism of that regulation.


Archives of Biochemistry and Biophysics | 1985

Enzymatic properties of dimethylglycine dehydrogenase and sarcosine dehydrogenase from rat liver

David H. Porter; Robert J. Cook; Conrad Wagner

Dimethylglycine dehydrogenase (EC 1.5.99.2) and sarcosine dehydrogenase (EC 1.5.99.1) are flavoproteins which catalyze the oxidative demethylation of dimethylglycine to sarcosine and sarcosine to glycine, respectively. During these reactions tightly bound tetrahydropteroylpentaglutamate (H4PteGlu5) is converted to 5,10-methylene tetrahydropteroylpentaglutamate (5,10-CH2-H4PteGlu5), although in the absence of H4PteGlu5, formaldehyde is produced. Single turnover studies using substrate levels of the enzyme (2.3 microM) showed pseudo-first-order kinetics, with apparent first-order rate constants of 0.084 and 0.14 s-1 at 23 and 48.3 microM dimethylglycine, respectively, for dimethylglycine dehydrogenase and 0.065 s-1 at 47.3 microM sarcosine for sarcosine dehydrogenase. The rates were identical in the absence or presence of bound tetrahydropteroylglutamate (H4PteGlu). Titration of the enzymes with substrate under anaerobic conditions did not disclose the presence of an intermediate semiquinone. The effect of dimethylglycine concentration upon the rate of the dimethylglycine dehydrogenase reaction under aerobic conditions showed nonsaturable kinetics suggesting a second low-affinity site for the substrate which increases the enzymatic rate. The Km for the high-affinity active site was 0.05 mM while direct binding for the low-affinity site could not be measured. Sarcosine and dimethylthetin are poor substrates for dimethylglycine dehydrogenase and methoxyacetic acid is a competitive inhibitor at low substrate concentrations. At high dimethylglycine concentrations, increasing the concentration of methoxyacetic acid produces an initial activation and then inhibition of dimethylglycine dehydrogenase activity. When these compounds were added in varying concentrations to the enzyme in the presence of dimethylglycine, their effects upon the rate of the reaction were consistent with the presence of a second low-affinity binding site on the enzyme which enhances the reaction rate. When sarcosine is used as the substrate for sarcosine dehydrogenase the kinetics are Michaelis-Menten with a Km of 0.5 mM for sarcosine. Also, methoxyacetic acid is a competitive inhibitor of sarcosine dehydrogenase with a Ki of 0.26 mM. In the absence of folate, substrate and product determinations indicated that 1 mol of formaldehyde and of sarcosine or glycine were produced for each mole of dimethylglycine or sarcosine consumed with the concomitant reduction of 1 mol of bound FAD.


Transgenic Research | 2006

A glycine N-methyltransferase knockout mouse model for humans with deficiency of this enzyme.

Zigmund Luka; Antonieta Capdevila; José M. Mato; Conrad Wagner

Three human cases having mutations in the glycine N-methyltransferase (GNMT) gene have been reported. This enzyme transfers a methyl group from S-adenosylmethionine (SAM) to glycine to form S-adenosylhomocysteine (SAH) and N-methylglycine (sarcosine) and is believed to be involved in the regulation of methylation. All three cases have mild liver disease but they seem otherwise unaffected. To study this further, gnmt deficient mice were generated for the first time. This resulted in the complete absence of GNMT protein and its activity in livers of homozygous mice. Compared to WT animals the absence of GNMT resulted in up to a 7-fold increase of free methionine and up to a 35-fold increase of SAM. The amount of SAH was significantly decreased (3 fold) in the homozygotes compared to WT. The ratio of SAM/SAH increased from 3 in WT to 300 in livers of homozygous transgenic mice. This suggests a possible significant change in methylation in the liver and other organs where GNMT is expressed.

Collaboration


Dive into the Conrad Wagner's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sally P. Stabler

MSC Industrial Direct Company

View shared research outputs
Top Co-Authors

Avatar

Shelly C. Lu

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert H. Allen

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

S. Harvey Mudd

Laboratory of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar

José M. Mato

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge