Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Constantinos Deltas is active.

Publication


Featured researches published by Constantinos Deltas.


Science | 1996

PKD2, a Gene for Polycystic Kidney Disease That Encodes an Integral Membrane Protein

Toshio Mochizuki; Guanqing Wu; Tomohito Hayashi; Stavroulla Xenophontos; Barbera Veldhuisen; Jasper J. Saris; David M. Reynolds; Yiqiang Cai; Patricia A. Gabow; Alkis Pierides; William J. Kimberling; Martijn H. Breuning; Constantinos Deltas; Dorien J.M. Peters; Stefan Somlo

A second gene for autosomal dominant polycystic kidney disease was identified by positional cloning. Nonsense mutations in this gene (PKD2) segregated with the disease in three PKD2 families. The predicted 968-amino acid sequence of the PKD2 gene product has six transmembrane spans with intracellular amino- and carboxyl-termini. The PKD2 protein has amino acid similarity with PKD1, the Caenorhabditis elegans homolog of PKD1, and the family of voltage-activated calcium (and sodium) channels, and it contains a potential calcium-binding domain.


The Lancet | 2010

Identification of a mutation in complement factor H-related protein 5 in patients of Cypriot origin with glomerulonephritis.

Daniel P. Gale; Elena Goicoechea de Jorge; H. Terence Cook; Rubén Martínez-Barricarte; Andreas Hadjisavvas; A. McLean; Charles D. Pusey; Alkis Pierides; Kyriacos Kyriacou; Yiannis Athanasiou; Konstantinos Voskarides; Constantinos Deltas; Andrew Palmer; Véronique Frémeaux-Bacchi; Santiago Rodríguez de Córdoba; Patrick H. Maxwell; Matthew C. Pickering

Summary Background Complement is a key component of the innate immune system, and variation in genes that regulate its activation is associated with renal and other disease. We aimed to establish the genetic basis for a familial disorder of complement regulation associated with persistent microscopic haematuria, recurrent macroscopic haematuria, glomerulonephritis, and progressive renal failure. Methods We sought patients from the West London Renal and Transplant Centre (London, UK) with unusual renal disease and affected family members as a method of identification of new genetic causes of kidney disease. Two families of Cypriot origin were identified in which renal disease was consistent with autosomal dominant transmission and renal biopsy of at least one individual showed C3 glomerulonephritis. A mutation was identified via a genome-wide linkage study and candidate gene analysis. A PCR-based diagnostic test was then developed and used to screen for the mutation in population-based samples and in individuals and families with renal disease. Findings Occurrence of familial renal disease cosegregated with the same mutation in the complement factor H-related protein 5 gene (CFHR5). In a cohort of 84 Cypriots with unexplained renal disease, four had mutation in CFHR5. Overall, we identified 26 individuals with the mutation and evidence of renal disease from 11 ostensibly unrelated kindreds, including the original two families. A mutant CFHR5 protein present in patient serum had reduced affinity for surface-bound complement. We term this renal disease CFHR5 nephropathy. Interpretation CFHR5 nephropathy accounts for a substantial burden of renal disease in patients of Cypriot origin and can be diagnosed with a specific molecular test. The high risk of progressive renal disease in carriers of the CFHR5 mutation implies that isolated microscopic haematuria or recurrent macroscopic haematuria should not be regarded as a benign finding in individuals of Cypriot descent. Funding UK Medical Research Council and Wellcome Trust.


Journal of The American Society of Nephrology | 2007

COL4A3/COL4A4 Mutations Producing Focal Segmental Glomerulosclerosis and Renal Failure in Thin Basement Membrane Nephropathy

Konstantinos Voskarides; Loukas Damianou; Vassos Neocleous; Ioanna Zouvani; Stalo Christodoulidou; Valsamakis Hadjiconstantinou; Kyriacos Ioannou; Yiannis Athanasiou; Charalampos Patsias; Efstathios Alexopoulos; Alkis Pierides; Kyriacos Kyriacou; Constantinos Deltas

Mutations in the COL4A3/COL4A4 genes of type IV collagen have been found in approximately 40% of cases of thin basement membrane nephropathy, which is characterized by microscopic hematuria and is classically thought to cause proteinuria and chronic renal failure rarely. Here we report our observations of 116 subjects from 13 Cypriot families clinically affected with thin basement membrane nephropathy. These families first came to our attention because they segregated microscopic hematuria, mild proteinuria, and variable degrees of renal impairment, but a dual diagnosis of focal segmental glomerulosclerosis (FSGS) and thin basement membrane nephropathy was made in 20 biopsied cases. Molecular studies identified founder mutations in both COL4A3 and COL4A4 genes in 10 families. None of 82 heterozygous patients had any extrarenal manifestations, supporting the diagnosis of thin basement membrane nephropathy. During follow-up of up to three decades, 31 of these 82 patients (37.8%) developed chronic renal failure and 16 (19.5%) reached end-stage renal disease. Mutations G1334E and G871C were detected in seven and three families, respectively, and were probably introduced by founders. We conclude that these particular COL4A3/COL4A4 mutations either predispose some patients to FSGS and chronic renal failure, or that thin basement membrane nephropathy sometimes coexists with another genetic modifier that is responsible for FSGS and progressive renal failure. The findings presented here do not justify the labelling of thin basement membrane nephropathy as a benign condition with excellent prognosis.


Journal of The American Society of Nephrology | 2003

Genotype-Renal Function Correlation in Type 2 Autosomal Dominant Polycystic Kidney Disease

Riccardo Magistroni; Ning He; Kairong Wang; Robin Andrew; Ann M. Johnson; Patricia A. Gabow; Elizabeth Dicks; Patrick S. Parfrey; Roser Torra; José L. San-Millán; Eliecer Coto; Marjan A. van Dijk; Martijn H. Breuning; Dorien J.M. Peters; Nadja Bogdanova; Giulia Ligabue; Alberto Albertazzi; Nick Hateboer; Kyproula Demetriou; Alkis Pierides; Constantinos Deltas; Peter St George-Hyslop; David Ravine; York Pei

Autosomal dominant polycystic kidney disease (ADPKD) is a common Mendelian disorder that affects approximately 1 in 1000 live births. Mutations of two genes, PKD1 and PKD2, account for the disease in approximately 80 to 85% and 10 to 15% of the cases, respectively. Significant interfamilial and intrafamilial renal disease variability in ADPKD has been well documented. Locus heterogeneity is a major determinant for interfamilial disease variability (i.e., patients from PKD1-linked families have a significantly earlier onset of ESRD compared with patients from PKD2-linked families). More recently, two studies have suggested that allelic heterogeneity might influence renal disease severity. The current study examined the genotype-renal function correlation in 461 affected individuals from 71 ADPKD families with known PKD2 mutations. Fifty different mutations were identified in these families, spanning between exon 1 and 14 of PKD2. Most (94%) of these mutations were predicted to be inactivating. The renal outcomes of these patients, including the age of onset of end-stage renal disease (ESRD) and chronic renal failure (CRF; defined as creatinine clearance < or = 50 ml/min, calculated using the Cockroft and Gault formula), were analyzed. Of all the affected individuals clinically assessed, 117 (25.4%) had ESRD, 47 (10.2%) died without ESRD, 65 (14.0%) had CRF, and 232 (50.3%) had neither CRF nor ESRD at the last follow-up. Female patients, compared with male patients, had a later mean age of onset of ESRD (76.0 [95% CI, 73.8 to 78.1] versus 68.1 [95% CI, 66.0 to 70.2] yr) and CRF (72.5 [95% CI, 70.1 to 74.9] versus 63.7 [95% CI, 61.4 to 66.0] yr). Linear regression and renal survival analyses revealed that the location of PKD2 mutations did not influence the age of onset of ESRD. However, patients with splice site mutations appeared to have milder renal disease compared with patients with other mutation types (P < 0.04 by log rank test; adjusted for the gender effect). Considerable renal disease variability was also found among affected individuals with the same PKD2 mutations. This variability can confound the determination of allelic effects and supports the notion that additional genetic and/or environmental factors may modulate the renal disease severity in ADPKD.


Clinical Journal of The American Society of Nephrology | 2011

Familial C3 Glomerulopathy Associated with CFHR5 Mutations: Clinical Characteristics of 91 Patients in 16 Pedigrees

Yiannis Athanasiou; Konstantinos Voskarides; Daniel P. Gale; Loukas Damianou; Charalampos Patsias; Michalis Zavros; Patrick H. Maxwell; H. T. Cook; Panayiota Demosthenous; Andreas Hadjisavvas; Kyriacos Kyriacou; Ioanna Zouvani; Alkis Pierides; Constantinos Deltas

BACKGROUND AND OBJECTIVES Complement factor H and related proteins (CFHR) are key regulators of the alternative complement pathway, where loss of function mutations lead to a glomerulopathy with isolated mesangial C3 deposits without immunoglobulins. Gale et al. (12) reported on 26 patients with the first familial, hematuric glomerulopathy caused by a founder mutation in the CFHR5 gene in patients of Cypriot descent living in the United Kingdom. CFHR5 nephropathy is clinically characterized by continuous microscopic hematuria whereas some patients present with additional episodes of synpharyngitic macrohematuria, associated with infection and pyrexia. A subgroup of patients, particularly men, develop additional proteinuria, hypertension, and chronic renal disease or ESRD. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS We herewith expand significantly on the study by Gale et al., reporting on histologic, molecular, and clinical findings in 91 patients from 16 families with the same founder mutation. RESULTS Eighty-two patients (90%) exhibited microscopic hematuria; 51 (62%), exhibited only microscopic hematuria, whereas the remaining 31 additionally had proteinuria (38%); 28 proteinuric patients developed chronic renal failure (CRF). Among carriers of CFHR5 mutation aged >50 years, 80% of the men and 21% of the women developed CRF; 18 developed ESRD (14 men [78%], 4 women [22%]). CONCLUSIONS The diagnosis of CFHR5-related, isolated C3 glomerulopathy was established in 2009 using newly described mutation analysis after decades of follow-up with unclear diagnoses, occasionally confused with IgA nephropathy. This larger patient cohort establishes the clinical course, significant variable expressivity, and marked gender difference regarding the development of CRF and ESRD.


Annals of the Rheumatic Diseases | 2003

Familial Mediterranean fever associated pyrin mutations in Greece

K Konstantopoulos; A Kanta; Constantinos Deltas; V Atamian; D Mavrogianni; A G Tzioufas; I Kollainis; Konstantinos Ritis; H M Moutsopoulos

Objective: To search for pyrin mutations associated with familial Mediterranean fever (FMF) in Greece. Patients and methods: 62 patients fulfilling the Tel Hashomer diagnostic criteria for definite (33) or probable (29) FMF diagnosis were studied. Eight point mutations of pyrin gene were tested by standard methods. Of the 62 patients tested, 48 were Greek, four were Jewish, seven were Armenian, and three were Arab. Results: 42 patients were found to be homozygotes for pyrin mutations; 11 patients were found to carry only one of the tested mutations; in nine patients no mutations were detected. Conclusion: Molecular detection of pyrin gene mutations seems useful in confirming suspected cases, and in detecting asymptomatic cases, of Mediterranean fever in Greece. It may also be used as a screening tool within affected families.


Human Genetics | 1998

Loss of heterozygosity in polycystic kidney disease with a missense mutation in the repeated region of PKD1

Michael Koptides; Rolandos Constantinides; George Kyriakides; Michael Hadjigavriel; Philippos C. Patsalis; Alkis Pierides; Constantinos Deltas

Abstract Loss of heterozygosity (LOH) is a molecular phenomenon that denotes the loss of one of the two alleles at a specific locus. It is frequently associated with tumour suppressor genes in various cancers and also with hyperproliferative disorders, although not exclusively. Interestingly, in conditions where there is an inherited germline mutation, the lost allele is always the functional one, thereby rendering a phenotypically dominant disease of recessive character at the cellular level. A disease more recently shown to be associated with LOH is polycystic kidney disease type 1, a systemic disorder characterized by significant pleiotropy. The main pathology is from renal cyst formation that eventually leads to end-stage renal failure during adult life. We describe the identification of a missense mutation in the repeated part of the PKD1 gene, exon 31, that substitutes valine for methionine. The mutation, M3375V, cosegregates with the disease phenotype in a large Cypriot family. During transplantation of one patient, one of the polycystic kidneys was removed and DNA was isolated from cystic epithelial cells. In 3 of 17 cysts examined with intragenic and flanking polymorphic markers on chromosome 16 we detected LOH, since the wild-type allele was lost, thereby rendering the affected kidneys of mosaic character. The degree of LOH was extensive and varied among the three cysts, supporting the multiplicity of expression of the phenomenon on different occasions. No LOH was detected for other selected loci examined. Our work further supports the hypothesis that the rate-limiting step in cyst formation may be the occurrence of a second somatic hit, although other factors may be also involved. The high frequency of mutations at this locus may, to a great extent, explain the variability in phenotype observed among patients in the same families, and the relatively high frequency of the disease worldwide.


Journal of The American Society of Nephrology | 2010

Genetic Variation of DKK3 May Modify Renal Disease Severity in ADPKD

Michelle Liu; Sally Yu Shi; Sean Senthilnathan; Julie Yu; Elliot Wu; Carsten Bergmann; Klaus Zerres; Nadja Bogdanova; Eliecer Coto; Constantinos Deltas; Alkis Pierides; Kyproula Demetriou; Olivier Devuyst; Berenice Gitomer; Marku Laakso; Anne Lumiaho; Klea Lamnissou; Riccardo Magistroni; Patrick S. Parfrey; Martijn H. Breuning; Dorien J.M. Peters; Roser Torra; Christopher G. Winearls; Vicente E. Torres; Peter C. Harris; Andrew D. Paterson; York Pei

Significant variation in the course of autosomal dominant polycystic kidney disease ( ADPKD) within families suggests the presence of effect modifiers. Recent studies of the variation within families harboring PKD1 mutations indicate that genetic background may account for 32 to 42% of the variance in estimated GFR (eGFR) before ESRD and 43 to 78% of the variance in age at ESRD onset, but the genetic modifiers are unknown. Here, we conducted a high-throughput single-nucleotide polymorphism (SNP) genotyping association study of 173 biological candidate genes in 794 white patients from 227 families with PKD1. We analyzed two primary outcomes: (1) eGFR and (2) time to ESRD (renal survival). For both outcomes, we used multidimensional scaling to correct for population structure and generalized estimating equations to account for the relatedness among individuals within the same family. We found suggestive associations between each of 12 SNPs and at least one of the renal outcomes. We genotyped these SNPs in a second set of 472 white patients from 229 families with PKD1 and performed a joint analysis on both cohorts. Three SNPs continued to show suggestive/significant association with eGFR at the Dickkopf 3 (DKK3) gene locus; no SNPs significantly associated with renal survival. DKK3 antagonizes Wnt/beta-catenin signaling, which may modulate renal cyst growth. Pending replication, our study suggests that genetic variation of DKK3 may modify severity of ADPKD resulting from PKD1 mutations.


Genetic Testing | 2002

Familial Mediterranean Fever (FMF) Mutations Occur Frequently in the Greek-Cypriot Population of Cyprus

Constantinos Deltas; Richard Mean; Elena Rossou; Constantina Costi; Panayiota Koupepidou; Irene Hadjiyanni; Victor Hadjiroussos; Petros Petrou; Alkis Pierides; Klea Lamnisou; Michael Koptides

Familial Mediterranean Fever (FMF) is an autosomal recessive disease of high prevalence within Mediterranean countries and particularly common in four ethnic populations: Arabs, non-Ashkenazi Jews, Armenians, and Turks. The responsible gene MEFV has been assigned to chromosome 16p13.3. Our aim was to establish the frequencies of the most common mutations in Greek-Cypriots. We found that 1 in 25 is a carrier of one of three mutations. V726A, M694V, and F479L. In 68 Grek-Cypriot FMF chromosomes analyzed, we found V726A (25%), F479L (20.6%), M694V (17.6%), and others (36.8%). Mutation F479L, relatively common in this population, is very rare elsewhere. Our study indicates that FMF is not a rare condition in Cyprus and that, because of the significant morbidity associated with this disorder, which is often diagnosed only after unnecessary surgeries, a newborn screening program to detect affected in this population may be warranted.


Nephrology Dialysis Transplantation | 2013

Molecular genetics of familial hematuric diseases

Constantinos Deltas; Alkis Pierides; Konstantinos Voskarides

The familial hematuric diseases are a genetically heterogeneous group of monogenic conditions, caused by mutations in one of several genes. The major genes involved are the following: (i) the collagen IV genes COL4A3/A4/A5 that are expressed in the glomerular basement membranes (GBM) and are responsible for the most frequent forms of microscopic hematuria, namely Alport syndrome (X-linked or autosomal recessive) and thin basement membrane nephropathy (TBMN). (ii) The FN1 gene, expressed in the glomerulus and responsible for a rare form of glomerulopathy with fibronectin deposits (GFND). (iii) CFHR5 gene, a recently recognized regulator of the complement alternative pathway and mutated in a recently revisited form of inherited C3 glomerulonephritis (C3GN), characterized by isolated C3 deposits in the absence of immune complexes. A hallmark feature of all conditions is the age-dependent penetrance and a broad phenotypic heterogeneity in the sense that subsets of patients progress to added proteinuria or proteinuria and chronic renal failure that may or may not lead to end-stage kidney disease (ESKD) anywhere between the second and seventh decade of life. In addition to other excellent laboratory tools that assist the clinician in reaching the correct diagnosis, the molecular analysis emerges as the gold standard in establishing the diagnosis in many cases of doubt due to equivocal findings that complicate the differential diagnosis. Recent work led to the description of candidate genetic modifiers which confer a variable risk for progressing to chronic renal failure when co-inherited on the background of a primary glomerulopathy. Finally, more families are still waiting to be studied and more genes to be mapped and cloned that are responsible for other forms of heritable hematuric diseases. The study of such genes and their protein products will likely shed more light on the structure and function of the glomerular filtration barrier and other important glomerular components.

Collaboration


Dive into the Constantinos Deltas's collaboration.

Top Co-Authors

Avatar

Alkis Pierides

Nicosia General Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Koptides

The Cyprus Institute of Neurology and Genetics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel P. Gale

University College London

View shared research outputs
Top Co-Authors

Avatar

Ioanna Zouvani

Nicosia General Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge