Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Constanze Nossol is active.

Publication


Featured researches published by Constanze Nossol.


PLOS ONE | 2011

Vulnerability of polarised intestinal porcine epithelial cells to mycotoxin deoxynivalenol depends on the route of application.

Anne-Kathrin Diesing; Constanze Nossol; Sven Dänicke; Nicole Walk; Andreas Post; Stefan Kahlert; Hermann-Josef Rothkötter; Jeannette Kluess

Background and Aims Deoxynivalenol (DON) is a Fusarium derived mycotoxin, often occurring on cereals used for human and animal nutrition. The intestine, as prominent barrier for nutritional toxins, has to handle the mycotoxin from the mucosa protected luminal side (apical exposure), as well as already absorbed toxin, reaching the cells from basolateral side via the blood stream. In the present study, the impact of the direction of DON exposure on epithelial cell behaviour and intestinal barrier integrity was elucidated. Methods A non-transformed intestinal porcine epithelial cell line (IPEC-J2), cultured in membrane inserts, serving as a polarised in vitro model to determine the effects of deoxynivalenol (DON) on cellular viability and tight junction integrity. Results Application of DON in concentrations up to 4000 ng/mL for 24, 48 and 72 hours on the basolateral side of membrane cultured polarised IPEC-J2 cells resulted in a breakdown of the integrity of cell connections measured by transepithelial electrical resistance (TEER), as well as a reduced expression of the tight junction proteins ZO-1 and claudin 3. Epithelial cell number decreased and nuclei size was enlarged after 72 h incubation of 4000 ng/mL DON from basolateral. Although necrosis or caspase 3 mediated apoptosis was not detectable after basolateral DON application, cell cycle analysis revealed a significant increase in DNA fragmentation, decrease in G0/G1 phase and slight increase in G2/M phase after 72 hours incubation with DON 2000 ng/mL. Conclusions Severity of impact of the mycotoxin deoxynivalenol on the intestinal epithelial barrier is dependent on route of application. The epithelium appears to be rather resistant towards apical (luminal) DON application whereas the same toxin dose from basolateral severely undermines barrier integrity.


Toxicology Letters | 2011

Mycotoxin deoxynivalenol (DON) mediates biphasic cellular response in intestinal porcine epithelial cell lines IPEC-1 and IPEC-J2

Anne-Kathrin Diesing; Constanze Nossol; Patricia Panther; Nicole Walk; Andreas Post; Jeannette Kluess; Peter Kreutzmann; Sven Dänicke; Hermann-Josef Rothkötter; Stefan Kahlert

The Fusarium derived mycotoxin deoxynivalenol (DON) is frequently found in cereals used for human and animal nutrition. We studied effects of DON in non-transformed, non-carcinoma, polarized epithelial cells of porcine small intestinal origin (IPEC-1 and IPEC-J2) in a low (200 ng/mL) and a high (2000 ng/mL) concentration. Application of high DON concentrations showed significant toxic effects as indicated by a reduction in cell number, in cellular reduction capacity measured by MTT assay, reduced uptake of neutral red (NR) and a decrease in cell proliferation. High dose toxicity was accompanied by disintegration of tight junction protein ZO-1 and increase of cell cycle phase G2/M. Activation of caspase 3 was found as an early event in the high DON concentration with an initial maximum after 6-8 h. In contrast, application of 200 ng/mL DON exhibited a response pattern distinct from the high dose DON toxicity. The cell cycle, ZO-1 expression and distribution as well as caspase 3 activation were not changed. BrdU incorporation was significantly increased after 72 h incubation with 200 ng/mL DON and NR uptake was only transiently reduced after 24 h. Low dose effects of DON on intestinal epithelial cells were triggered by mechanisms different from those responsible for the high dose toxicity.


Histochemistry and Cell Biology | 2011

Air–liquid interface cultures enhance the oxygen supply and trigger the structural and functional differentiation of intestinal porcine epithelial cells (IPEC)

Constanze Nossol; Anne-Kathrin Diesing; Nicole Walk; Heidi Faber-Zuschratter; Roland Hartig; Andreas Post; Jeannette Kluess; Hermann-Josef Rothkötter; Stefan Kahlert

The specific function of the epithelium as critical barrier between the intestinal lumen and the organism’s internal microenvironment is reflected by permanent maintenance of intercellular junctions and cellular polarity. The intestinal epithelial cells are responsible for absorption of nutritional components, facing mechanical stress and a changing oxygen supplementation via blood stream. Oxygen itself can regulate the barrier and the absorptive function of the epithelium. Therefore, we compared the dish cell culture, the transwell-like membrane culture and the oxygen enriched air–liquid interface (ALI) culture. We demonstrated strong influence of the different culture conditions on morphology and function of intestinal porcine epithelial cell lines in vitro. ALI culture resulted in a significant increase in cell number, epithelial cell layer thickness and expression as well as apical localisation of the microvilli-associated protein villin. Remarkable similarities regarding the morphological parameters were observed between ALI cultures and intestinal epithelial cells in vivo. Furthermore, the functional analysis of protein uptake and degradation by the epithelial cells demonstrated the necessity of sufficient oxygen supply as achieved in ALI cultures. Our study is the first report providing marked evidence that optimised oxygen supply using ALI cultures directly affects the morphological differentiation and functional properties of intestinal epithelial cells in vitro.


PLOS ONE | 2012

Gene regulation of intestinal porcine epithelial cells IPEC-J2 is dependent on the site of deoxynivalenol toxicological action.

Anne-Kathrin Diesing; Constanze Nossol; Siriluck Ponsuksili; Klaus Wimmers; Jeannette Kluess; Nicole Walk; Andreas Post; Hermann-Josef Rothkötter; Stefan Kahlert

The intestinal epithelial cell layer represents the border between the luminal and systemic side of the gut. The decision between absorption and exclusion of substances is the quintessential function of the gut and varies along the gut axis. Consequently, potentially toxic substances may reach the basolateral domain of the epithelial cell layer via blood stream. The mycotoxin deoxynivalenol (DON) is a Fusarium derived secondary metabolite known to enter the blood stream and displaying a striking toxicity on the basolateral side of polarised epithelial cell layers in vitro. Here we analysed potential mechanisms of apical and basolateral DON toxicity reflected in the gene expression. We used the jejunum-derived, polarised intestinal porcine epithelial cell line IPEC-J2 as an in vitro cell culture model. Luminal and systemic DON challenge of the epithelial cell layer was mimicked by a DON application from the apical or basolateral compartment of membrane inserts for 72 h. We compared the genome-wide gene expression of untreated and DON-treated IPEC-J2 cells with the GeneChip® Porcine Genome Array of Affymetrix. Low basolateral DON (200 ng/mL) application triggered 10 times more gene transcripts in comparison to the corresponding apical application (2539 versus 267) despite the intactness of the challenged cell layer as measured by transepithelial electrical resistance. Analysis of the regulated genes by bioinformatic resource DAVID identified several groups of biochemical pathways modulated by concentration and orientation of DON application. Selected genes representing pathways of the cellular metabolism, information processing and structural design were analysed in detail by quantitative PCR. Our findings clearly show that apical and basolateral challenge of epithelial cell layers trigger different gene response profiles paralleled with a higher susceptibility towards basolateral challenge. The evaluation of toxicological potentials of mycotoxins should take this difference in gene regulation dependent on route of application into account.


PLOS ONE | 2015

Comparing Two Intestinal Porcine Epithelial Cell Lines (IPECs): Morphological Differentiation, Function and Metabolism

Constanze Nossol; Anicò Barta-Böszörményi; Stefan Kahlert; Werner Zuschratter; Heidi Faber-Zuschratter; Nicole Reinhardt; S. Ponsuksili; Klaus Wimmers; Anne-Kathrin Diesing; Hermann-Josef Rothkötter

The pig shows genetical and physiological resemblance to human, which predestines it as an experimental animal model especially for mucosal physiology. Therefore, the intestinal epithelial cell lines 1 and J2 (IPEC-1, IPEC-J2) - spontaneously immortalised cell lines from the porcine intestine - are important tools for studying intestinal function. A microarray (GeneChip Porcine Genome Array) was performed to compare the genome wide gene expression of IPECs. Different significantly up-regulated pathways were identified, like “lysosome”, “pathways in cancer”, “regulation of actin cytoskeleton” and “oxidative phosphorylation” in IPEC-J2 in comparison to IPEC-1. On the other hand, “spliceosome”, “ribosome”, “RNA-degradation” and “tight junction” are significantly down-regulated pathways in IPEC-J2 in comparison to IPEC-1. Examined pathways were followed up by functional analyses. ATP-, oxygen, glucose and lactate-measurement provide evidence for up-regulation of oxidative phosphorylation in IPEC-J2. These cells seem to be more active in their metabolism than IPEC-1 cells due to a significant higher ATP-content as well as a higher O2- and glucose-consumption. The down-regulated pathway “ribosome” was followed up by measurement of RNA- and protein content. In summary, IPEC-J2 is a morphologically and functionally more differentiated cell line in comparison to IPEC-1. In addition, IPEC-J2 cells are a preferential tool for in vitro studies with the focus on metabolism.


Toxicology Letters | 2012

A chronic oral exposure of pigs with deoxynivalenol partially prevents the acute effects of lipopolysaccharides on hepatic histopathology and blood clinical chemistry

Cassandra Stanek; Nicole Reinhardt; Anne-Kathrin Diesing; Constanze Nossol; Stefan Kahlert; Patricia Panther; Jeannette Kluess; Hermann-Josef Rothkötter; Doerthe Kuester; Bianca Brosig; Susanne Kersten; Sven Dänicke

Lipopolysaccharides (LPS), a cell wall component of gram-negative bacteria, and deoxynivalenol (DON), a prevalent Fusarium-derived contaminant of cereal grains, are each reported to have detrimental effects on the liver. A potentiating toxic effect of the combined exposure was reported previously in a mouse model and hepatocytes in vitro, but not in swine as the most DON-susceptible species. Thus, pigs were fed either a control diet (CON) or a Fusarium contaminated diet (DON, 3.1mg DON/kg diet) for 37 days. At day 37 control pigs were infused for 1h either with physiological saline (CON_CON), 100μg/kg BW DON (CON_DON), 7.5μg/kg BW LPS (CON_LPS), or both toxins (CON_DON/LPS) and Fusarium-pigs with saline (DON_CON) or 7.5μg/kg BW LPS (DON_LPS). Blood samples were taken before and after infusion (-30, +30, +60, +120, and +180min) for clinical blood chemistry. Pigs were sacrificed at +195min and liver histopathology was performed. LPS resulted in higher relative liver weight (p<0.05), portal, periportal and acinar inflammation (p<0.05), haemorrhage (p<0.01) and pathological bilirubin levels (CON_CON 1.0μmol/L vs. CON_LPS 5.4μmol/L, CON_DON/LPS 8.3μmol/L; p<0.001). DON feeding alleviated effects of LPS infusion on histopathology and blood chemistry to control levels, whereas DON infusion alone had no impact.


PLOS ONE | 2016

Physiological Concentration of Exogenous Lactate Reduces Antimycin A Triggered Oxidative Stress in Intestinal Epithelial Cell Line IPEC-1 and IPEC-J2 In Vitro

Stefan Kahlert; Sami Junnikkala; Lydia Renner; Ulla Hynönen; Roland Hartig; Constanze Nossol; Anikó Barta-Böszörményi; Sven Dänicke; Wolfgang-Bernhard Souffrant; Airi Palva; Hermann-Josef Rothkötter; Jeannette Kluess

Weaning triggers an adaptation of the gut function including luminal lactate generation by lactobacilli, depending on gastrointestinal site. We hypothesized that both lactobacilli and lactate influence porcine intestinal epithelial cells. In vivo experiments showed that concentration of lactate was significantly higher in gastric, duodenal and jejunal chyme of suckling piglets compared to their weaned counterparts. In an in vitro study we investigated the impact of physiological lactate concentration as derived from the in vivo study on the porcine intestinal epithelial cells IPEC-1 and IPEC-J2. We detected direct adherence of lactobacilli on the apical epithelial surface and a modulated F-actin structure. Application of lactobacilli culture supernatant alone or lactate (25 mM) at low pH (pH 4) changed the F-actin structure in a similar manner. Treatment of IPEC cultures with lactate at near neutral pH resulted in a significantly reduced superoxide-generation in Antimycin A-challenged cells. This protective effect was nearly completely reversed by inhibition of cellular lactate uptake via monocarboxylate transporter. Lactate treatment enhanced NADH autofluorescence ratio (Fcytosol/Fnucleus) in non-challenged cells, indicating an increased availability of reduced nucleotides, but did not change the overall ATP content of the cells. Lactobacilli-derived physiological lactate concentration in intestine is relevant for alleviation of redox stress in intestinal epithelial cells.


Anatomical Record-advances in Integrative Anatomy and Evolutionary Biology | 2013

Rapid Interaction of Helicobacter pylori with Microvilli of the Polar Human Gastric Epithelial Cell Line NCI-N87

Anne-Kathrin Diesing; Constanze Nossol; Heidi Faber-Zuschratter; Werner Zuschratter; Lydia Renner; Olga Sokolova; Michael Naumann; Hermann-Josef Rothkötter

Infection with Helicobacter pylori results often in chronic gastritis, gastric ulcers or even gastric tumor development. Little is known about the initial interaction between gastric epithelial cells and H. pylori. The aim of the present study was to analyze the initial host contact to the bacteria. Monolayers of the human gastric epithelial cell line NCI‐N87 grown on porous membranes were used and the apical side of the epithelium was exposed to the H. pylori wild‐type strain P1 for 1 hr. Many epithelial cells were colonized by bacteria within the period of 60 min. Using scanning electron microscopy we detected that the bacteria were in close contact with the epithelia via microvilli. Further, transmission electron microscopy of the contact sites revealed no difference in the morphology of the microvilli in comparison to those not attached to the bacteria. The present study demonstrates the importance of microvilli on apical epithelial cells during the initial contact of the host by colonizing H. pylori. Anat Rec, 296:1800–1805, 2013.


Cell death discovery | 2017

Air-liquid interface enhances oxidative phosphorylation in intestinal epithelial cell line IPEC-J2.

Sonja Klasvogt; Werner Zuschratter; Anke Schmidt; Andrea Kröber; Sandra Vorwerk; Romina Wolter; Berend Isermann; Klaus Wimmers; Hermann-Josef Rothkötter; Constanze Nossol

The intestinal porcine epithelial cell line IPEC-J2, cultured under the air–liquid interface (ALI) conditions, develops remarkable morphological characteristics close to intestinal epithelial cells in vivo. Improved oxygen availability has been hypothesised to be the leading cause of this morphological differentiation. We assessed oxygen availability in ALI cultures and examined the influence of this cell culture method on glycolysis and oxidative phosphorylation in IPEC-J2 using the submerged membrane culture (SMC) and ALI cultures. Furthermore, the role of HIF-1 as mediator of oxygen availability was analysed. Measurements of oxygen tension confirmed increased oxygen availability at the medium–cell interface and demonstrated reduced oxygen extraction at the basal compartment in ALI. Microarray analysis to determine changes in the genetic profile of IPEC-J2 in ALI identified 2751 modified transcripts. Further examinations of candidate genes revealed reduced levels of glycolytic enzymes hexokinase II and GAPDH, as well as lactate transporting monocarboxylate transporter 1 in ALI, whereas expression of the glucose transporter GLUT1 remained unchanged. Cytochrome c oxidase (COX) subunit 5B protein analysis was increased in ALI, although mRNA level remained at constant level. COX activity was assessed using photometric quantification and a three-fold increase was found in ALI. Quantification of glucose and lactate concentrations in cell culture medium revealed significantly reduced glucose levels and decreased lactate production in ALI. In order to evaluate energy metabolism, we measured cellular adenosine triphosphate (ATP) aggregation in homogenised cell suspensions showing similar levels. However, application of the uncoupling agent FCCP reduced ATP levels in ALI but not in SMC. In addition, HIF showed reduced mRNA levels in ALI. Furthermore, HIF-1α protein was reduced in the nuclear compartment of ALI when compared to SCM as confirmed by confocal microscopy. These results indicate a metabolic switch in IPEC-J2 cultured under ALI conditions enhancing oxidative phosphorylation and suppressing glycolysis. ALI-induced improvement of oxygen supply reduced nuclear HIF-1α, demonstrating a major change in the transcriptional response.


Mycotoxin Research | 2013

Deoxynivalenol affects the composition of the basement membrane proteins and influences en route the migration of CD16+ cells into the intestinal epithelium

Constanze Nossol; Anne-Kathrin Diesing; Stefan Kahlert; Susanne Kersten; Jeannette Kluess; S. Ponsuksili; Roland Hartig; Klaus Wimmers; Sven Dänicke; Hermann-Josef Rothkötter

Collaboration


Dive into the Constanze Nossol's collaboration.

Top Co-Authors

Avatar

Hermann-Josef Rothkötter

Otto-von-Guericke University Magdeburg

View shared research outputs
Top Co-Authors

Avatar

Stefan Kahlert

Otto-von-Guericke University Magdeburg

View shared research outputs
Top Co-Authors

Avatar

Anne-Kathrin Diesing

Otto-von-Guericke University Magdeburg

View shared research outputs
Top Co-Authors

Avatar

Jeannette Kluess

Otto-von-Guericke University Magdeburg

View shared research outputs
Top Co-Authors

Avatar

Sven Dänicke

Friedrich Loeffler Institute

View shared research outputs
Top Co-Authors

Avatar

Andreas Post

Otto-von-Guericke University Magdeburg

View shared research outputs
Top Co-Authors

Avatar

Nicole Walk

Otto-von-Guericke University Magdeburg

View shared research outputs
Top Co-Authors

Avatar

Patricia Panther

Otto-von-Guericke University Magdeburg

View shared research outputs
Top Co-Authors

Avatar

Heidi Faber-Zuschratter

Otto-von-Guericke University Magdeburg

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge