Conxi Lázaro
Karolinska Institutet
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Conxi Lázaro.
American Journal of Human Genetics | 1997
Eduard Serra; Susana Puig; David Otero; Antonia Gaona; Helena Kruyer; Elisabet Ars; Xavier Estivill; Conxi Lázaro
Neurofibroma is a benign tumor that arises from small or large nerves. This neoplastic lesion is a common feature of neurofibromatosis type 1 (NF1), one of the most common autosomal dominant disorders. The NF1 gene codes for a protein called neurofibromin. It possesses a region that shares a high homology with the family of GTPase-activating proteins, which are negative regulators of RAS function and thereby control cell growth and differentiation. The evidence points to the NF1 gene being a tumor-suppressor gene. NF1 patients also have an increased incidence of certain malignant tumors that are believed to follow the two hit hypothesis, with one allele constitutionally inactivated and the other somatically mutated. Recently, somatic loss of heterozygosity (LOH) has been described for neurofibromas, and mutations in both copies of the NF1 gene have been reported for a dermal neurofibroma. The aim of our study was the analysis of the NF1 locus in benign neurofibromas in NF1 patients. We performed LOH analysis on 60 neurofibromas belonging to 17 patients, 9 of them with family history of the disease and 8 of them sporadic. We have analyzed five intragenic NF1 markers and six extragenic markers, and we have found LOH in 25% of the neurofibromas (corresponding to 53% of the patients). In addition, we found that in the neurofibromas of patients from familial cases the deletions occurred in the allele that is not transmitted with the disease, indicating that both copies of the NF1 gene were inactivated in these tumors. Therefore, the recent reports mentioned above, together with our findings, strongly support the double inactivation of the NF1 gene in benign neurofibromas.
The New England Journal of Medicine | 1994
Conxi Lázaro; Anna Ravella; Antonia Gaona; Victor Volpini; Xavier Estivill
BACKGROUNDnThe mutation rate of the neurofibromatosis type 1 (NF1) gene is one of the highest in the human genome, with about 50 percent of cases being due to new mutations. We describe a family in which neurofibromatosis type 1 occurred in two siblings with clinically normal parents, and we demonstrate germ-line mosaicism in the father.nnnMETHODSnWe studied lymphocyte DNA from each member of the family and the fathers spermatozoa for several polymorphic intragenic markers of the NF1 gene. Southern blots of DNA digested with several enzymes were hybridized with complementary DNA and individual NF1 exon probes to search for alterations in the gene.nnnRESULTSnThe affected siblings, with a clinically severe form of neurofibromatosis type 1, showed no inheritance of paternal alleles for a marker in intron 38 of the NF1 gene, whereas they received alleles from both parents for other NF1 markers. Analysis with probes from this region of the NF1 gene showed a 12-kb deletion of the NF1 gene, involving exons 32 to 39, in the affected offspring. Ten percent of the fathers spermatozoa carried the same NF1 deletion, but the abnormality was not detected in DNA from his lymphocytes.nnnCONCLUSIONSnThe presence of the NF1 mutation in 10 percent of the clinically normal fathers spermatozoa supports the hypothesis that most germ-line mutations occur in precursors of gametes. In cases of spontaneous mutation, analyzing the specific NF1 mutation in the fathers sperm might help in the detection of mosaicism and thus facilitate genetic counseling about further pregnancies.
Journal of Medical Genetics | 2003
Elisabet Ars; Helena Kruyer; Marta Morell; E Pros; Eduard Serra; Anna Ravella; Xavier Estivill; Conxi Lázaro
Neurofibromatosis type 1 (NF1) is one of the commonest autosomal dominant disorders in man, affecting 1 in 3500 people. Consensus clinical criteria were defined in 19871 and revised and updated in 1997.2 Cafe au lait spots, axillary freckling, dermal neurofibromas, and Lisch nodules of the iris are the most common manifestations of this disorder. Most of the clinical symptoms of the disease are age dependent and considerable phenotypic variability has been described both between and within families.3,4 This genetic disorder is caused by mutations in the NF1 gene, one of the largest human genes, composed of 60 exons and spanning more than 300 kb of genomic DNA.5 The determination of the NF1 mutational spectrum has been complex owing to the large number of coding exons and the considerable mutational heterogeneity. Until recently, most diagnostic laboratories just offered linkage analysis for NF1 patients, which excluded diagnosis of the 50% of de novo cases. The use of techniques based on the analysis of NF1 mRNA greatly facilitated the number of mutations identified and NF1 screening efficiency, depicting a mutational NF1 spectrum.6–8 These studies highlighted the importance of splicing defects in molecular NF1 pathology and, despite most patients bearing unique mutations, they suggested the recurrence of several mutations.nnHere we present our experience with the direct analysis of the whole NF1 coding region in 474 unrelated subjects suspected of having NF1. Mutations have been identified in 189 patients, 85 of them bearing recurrent mutations.nn### Patients and familiesnnFour hundred and seventy-four unrelated subjects suspected of having NF1 were analysed for mutations in the NF1 gene. Included in these 474 cases are 80 NF1 patients studied previously.6 Clinical data confirming NF1 diagnostic criteria were available in 201 (42%) of the subjects studied and in the remaining cases either no …
American Journal of Human Genetics | 2000
Catalina López Correa; Hilde Brems; Conxi Lázaro; Peter Marynen; Eric Legius
Neurofibromatosis type 1 is a common autosomal dominant disorder caused by mutations of the NF1 gene on chromosome 17. In only 5%-10% of cases, a microdeletion including the NF1 gene is found. We analyzed a set of polymorphic dinucleotide-repeat markers flanking the microdeletion on chromosome 17 in a group of seven unrelated families with a de novo NF1 microdeletion. Six of seven microdeletions were of maternal origin. The breakpoints of the microdeletions of maternal origin were localized in flanking paralogous sequences, called NF1-REPs. The single deletion of paternal origin was shorter, and no crossover occurred on the paternal chromosome 17 during transmission. Five of the six cases of maternal origin were informative, and all five showed a crossover, between the flanking markers, after maternal transmission. The observed crossovers flanking the NF1 region suggest that these NF1 microdeletions result from an unequal crossover in maternal meiosis I, mediated by a misalignment of the flanking NF1-REPs.
Human Genetics | 1996
Conxi Lázaro; Antonia Gaona; Peter Ainsworth; Romano Tenconi; Dominique Vidaud; Helena Kruyer; Elisabet Ars; Victor Volpini; Xavier Estivill
Abstract Neurofibromatosis type 1 (NF1) is an autosomal dominant disorder with a prevalence of around 1 in 3500, affecting all ethnic groups. The clinical manifestations of the disease are variable, even among members of the same family, and affect a variety of tissues and cell types, including skin, iris, central and peripheral nervous systems and skeletal system. It has been reported that the majority of sporadic mutations in NF1 arise in paternally inherited alleles. We present here a collaborative study of the parental origin and type of mutation in individuals with de novo NF1, who account for up to a half of all cases of clinically diagnosed NF1. We have studied intragenic and extragenic markers in 470 NF1 families. In 32 of these families it was possible to assess the parental origin of a de novo NF1 mutation either by linkage analysis (in families with three generations) or by the detection of an intragenic deletion in a sporadic NF1 case. Eleven of these 32 families have three generations (the second and third generation being affected), with the mutation (not a large deletion) being of paternal origin in 82% of them (P < 0.05). In the other 21 families an intragenic deletion was detected, in 76% being in the maternal chromosome and in 24% in the paternal one (P < 0.05). Our results suggest that in NF1 the majority of deletions occur in oogenesis, while other types of mutations should account for the paternally derived NF1 mutations.
Human Genetics | 1993
Conxi Lázaro; Antonia Gaona; Ganfeng Xu; Robert S. Weiss; Xavier Estivill
We describe a polymorphic microsatellite in intron 38 of the neurofibromatosis type 1 (NF1) gene. The microsatellite consists of a CA/GT dinucleotide repeat detecting 8 alleles; it has a heterozygosity of 82 %.
Human Genetics | 2001
Eduard Serra; Elisabet Ars; Anna Ravella; Aurora Sánchez; Susana Puig; Thorsten Rosenbaum; Xavier Estivill; Conxi Lázaro
Abstract. Neurofibromas, benign tumors that originate from the peripheral nerve sheath, are a hallmark of neurofibromatosis typexa01 (NF1). Although loss of heterozygosity (LOH) is a common phenomenon in this neoplasia, it only accounts for part of the somatic NF1 mutations found. Somatic point mutations or the presence of two hits in the NF1 gene have only been reported for a few neurofibromas. The large size of the NF1 gene together with the multicellular composition of these tumors has greatly hampered their molecular characterization. Here, we present the somatic NF1 mutational analysis of the whole set of neurofibromas studied by our group and consisting in 126 tumors derived from 32 NF1 patients. We report the identification of 45 independent somatic NF1 mutations, 20 of which are reported for the first time. Different types of point mutations together with LOH affecting the NF1 gene and its surrounding region or extending along the 17q arm have been found. Among point mutations, those affecting the correct splicing of the NF1 gene are common, coinciding with results reported on germline NF1 mutations. In most cases, we have been able to confirm that both copies of the NF1 gene are inactivated. We have also found that both somatic and germline mutations can be expressed at the RNA level in the neoplastic cells. Furthermore, we have observed that the study of more than one tumor derived from the same patient is useful for the identification of the germline mutation. Finally, we have noticed that the culture of neurofibromas and their fibroblast clearance facilitates LOH detection in cases in which it is difficult to determine.
Human Mutation | 1999
C Lopez Correa; Hilde Brems; Conxi Lázaro; Xavier Estivill; Maurizio Clementi; S Mason; J L Rutkowski; Peter Marynen; Eric Legius
Neurofibromatosis type 1 (NF1) is a common autosomal dominant disorder characterized by a marked variability in expression. A more severe phenotype is frequently observed in the group of patients carrying a large NF1 deletion. To study the extent of the microdeletion in these NF1 patients, we generated a partial physical map of the NF1 flanking region. We describe seven PACs and three new polymorphic dinucleotide repeats located outside the NF1 gene and analyzed 20 unrelated individuals with an NF1 microdeletion in a collaborative study. We detected one individual with a substantially smaller deletion including only the NF1 gene and its three embedded genes. In the other 19 patients, the deletion extended at least 1 Mb. The parental origin of the deletion was determined in 15 individuals and was maternal in 13 and paternal in two cases. The new molecular tools described here can be used to unequivocally diagnose a possible extragenic extension of an NF1 deletion. Hum Mutat 14:387–393, 1999.
Journal of Medical Genetics | 1999
Anna Ruiz; Susana Puig; Josep Malvehy; Conxi Lázaro; Michael Lynch; Anna M Gimenez-Arnau; Lluís Puig; Julian Sánchez-Conejo; Xavier Estivill; Teresa Castel
The CDKN2A gene has been implicated in cutaneous malignant melanoma (CMM) in about 40% of families with linkage to chromosome 9p21, while a small proportion of families have mutations in the CDK4 gene. In order to estimate the importance of these genes in the predisposition to CMM in Spanish families and patients we have analysed, by SSCA, a total of 56 subjects belonging to 34 CMM families, and nine patients with multiple CMM and other neoplasia. We have detected germline CDKN2A mutations in six out of the 34 families (17%). A frameshift mutation (358delG) and four missense mutations (G59V, G101W (two cases), D84Y, and R87W) were identified. Five CMM patients from different families (14%) carried the A148T variant, which is known not to affect p16 activity. No mutations were detected in the patients with multiple CMM or other neoplasms. We have not found mutations either in exon 1β of the CDKN2A gene or in exon 2A of CDK4. Linkage analysis of the 9p21 region showed exclusion for one of the families for CMM and for four families for CMM/dysplastic naevi. This study indicates a small role for CDKN2A in Spanish CMM families and suggests that other genes are also responsible for CMM predisposition.
American Journal of Human Genetics | 1998
Elisabet Ars; Helena Kruyer; Antonia Gaona; Pilar Casquero; Jordi Rosell; Victor Volpini; Eduard Serra; Conxi Lázaro; Xavier Estivill
Spinal neurofibromatosis (SNF) has been considered to be an alternative form of neurofibromatosis in which spinal cord tumors are the main clinical characteristic. Familial SNF has been reported, elsewhere, in three families-two linked to markers within the gene for neurofibromatosis type 1 (NF1) and the other not linked to NF1-but no molecular alterations have been described in these families. We describe a three-generation family that includes five members affected by SNF. All the affected members presented multiple spinal neurofibromas and café au lait spots, one member had cutaneous neurofibromas, and some members had other signs of NF1. Genetic analysis, performed with markers within and flanking the NF1 gene, showed segregation with the NF1 locus. Mutation analysis, performed with the protein-truncation test and SSCP/heteroduplex analysis of the whole coding region of the NF1 gene, identified a frameshift mutation (8042insA) in exon 46, which should result in a truncated NF1 protein. The 8042insA mutation was detected in all five family members with the SNF/NF1 phenotype. To our knowledge, this is the first time that a mutation in the NF1 gene has been associated with SNF. The clinical homogeneity in the severity of the disease among the affected members of the family, which is unusual in NF1, suggests that a particular property of the NF1 mutation described here, a gene closely linked to NF1, or posttranscriptional events are involved in this severe neurological phenotype.