Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cora Kooi is active.

Publication


Featured researches published by Cora Kooi.


Infection and Immunity | 2004

Identification of Burkholderia cenocepacia Genes Required for Bacterial Survival In Vivo

Tracey A. Hunt; Cora Kooi; Pamela A. Sokol; Miguel A. Valvano

ABSTRACT Burkholderia cenocepacia (formerly Burkholderia cepacia complex genomovar III) causes chronic lung infections in patients with cystic fibrosis. In this work, we used a modified signature-tagged mutagenesis (STM) strategy for the isolation of B. cenocepacia mutants that cannot survive in vivo. Thirty-seven specialized plasposons, each carrying a unique oligonucleotide tag signature, were constructed and used to examine the survival of 2,627 B. cenocepacia transposon mutants, arranged in pools of 37 unique mutants, after a 10-day lung infection in rats by using the agar bead model. The recovered mutants were screened by real-time PCR, resulting in the identification of 260 mutants which presumably did not survive within the lungs. These mutants were repooled into smaller pools, and the infections were repeated. After a second screen, we isolated 102 mutants unable to survive in the rat model. The location of the transposon in each of these mutants was mapped within the B. cenocepacia chromosomes. We identified mutations in genes involved in cellular metabolism, global regulation, DNA replication and repair, and those encoding bacterial surface structures, including transmembrane proteins and cell surface polysaccharides. Also, we found 18 genes of unknown function, which are conserved in other bacteria. A subset of 12 representative mutants that were individually examined using the rat model in competition with the wild-type strain displayed reduced survival, confirming the predictive value of our STM screen. This study provides a blueprint to investigate at the molecular level the basis for survival and persistence of B. cenocepacia within the airways.


Journal of Bacteriology | 2006

A Complete Lipopolysaccharide Inner Core Oligosaccharide Is Required for Resistance of Burkholderia cenocepacia to Antimicrobial Peptides and Bacterial Survival In Vivo

Ronald S. Flannagan; Cora Kooi; Pamela A. Sokol; Miguel A. Valvano

Burkholderia cenocepacia is an important opportunistic pathogen of patients with cystic fibrosis. This bacterium is inherently resistant to a wide range of antimicrobial agents, including high concentrations of antimicrobial peptides. We hypothesized that the lipopolysaccharide (LPS) of B. cenocepacia is important for both virulence and resistance to antimicrobial peptides. We identified hldA and hldD genes in B. cenocepacia strain K56-2. These two genes encode enzymes involved in the modification of heptose sugars prior to their incorporation into the LPS core oligosaccharide. We constructed a mutant, SAL1, which was defective in expression of both hldA and hldD, and by performing complementation studies we confirmed that the functions encoded by both of these B. cenocepacia genes were needed for synthesis of a complete LPS core oligosaccharide. The LPS produced by SAL1 consisted of a short lipid A-core oligosaccharide and was devoid of O antigen. SAL1 was sensitive to the antimicrobial peptides polymyxin B, melittin, and human neutrophil peptide 1. In contrast, another B. cenocepacia mutant strain that produced complete lipid A-core oligosaccharide but lacked polymeric O antigen was not sensitive to polymyxin B or melittin. As determined by the rat agar bead model of lung infection, the SAL1 mutant had a survival defect in vivo since it could not be recovered from the lungs of infected rats 14 days postinfection. Together, these data show that the B. cenocepacia LPS inner core oligosaccharide is needed for in vitro resistance to three structurally unrelated antimicrobial peptides and for in vivo survival in a rat model of chronic lung infection.


Infection and Immunity | 2006

Burkholderia cenocepacia ZmpB Is a Broad-Specificity Zinc Metalloprotease Involved in Virulence

Cora Kooi; B. Subsin; R. Chen; B. Pohorelic; Pamela A. Sokol

ABSTRACT In previous studies we characterized the Burkholderia cenocepacia ZmpA zinc metalloprotease. In this study, we determined that B. cenocepacia has an additional metalloprotease, which we designated ZmpB. The zmpB gene is present in the same species as zmpA and was detected in B. cepacia, B. cenocepacia, B. stabilis, B. ambifaria, and B. pyrrocinia but was absent from B. multivorans, B. vietnamiensis, B. dolosa, and B. anthina. The zmpB gene was expressed, and ZmpB was purified from Escherichia coli by using the pPROEXHTa His6 Tag expression system. ZmpB has a predicted preproenzyme structure typical of thermolysin-like proteases and is distantly related to Bacillus cereus bacillolysin. ZmpB was expressed as a 63-kDa preproenzyme precursor that was autocatalytically cleaved into mature ZmpB (35 kDa) and a 27-kDa prepropeptide. EDTA, 1,10-phenanthroline, and Zn2+ cations inhibited ZmpB enzyme activity, indicating that it is a metalloprotease. ZmpB had proteolytic activity against α-1 proteinase inhibitor, α2-macrogobulin, type IV collagen, fibronectin, lactoferrin, transferrin, and immunoglobulins. B. cenocepacia zmpB and zmpA zmpB mutants had no proteolytic activity against casein and were less virulent in a rat agar bead chronic infection model, indicating that zmpB is involved in B. cenocepacia virulence. Expression of zmpB was regulated by both the CepIR and CciIR quorum-sensing systems.


Infection and Immunity | 2007

Burkholderia cenocepacia Requires a Periplasmic HtrA Protease for Growth under Thermal and Osmotic Stress and for Survival In Vivo

Ronald S. Flannagan; Daniel F. Aubert; Cora Kooi; Pamela A. Sokol; Miguel A. Valvano

ABSTRACT Burkholderia cenocepacia, a member of the B. cepacia complex, is an opportunistic pathogen that causes serious infections in patients with cystic fibrosis. We identified a six-gene cluster in chromosome 1 encoding a two-component regulatory system (BCAL2831 and BCAL2830) and an HtrA protease (BCAL2829) hypothesized to play a role in the B. cenocepacia stress response. Reverse transcriptase PCR analysis of these six genes confirmed they are cotranscribed and comprise an operon. Genes in this operon, including htrA, were insertionally inactivated by recombination with a newly created suicide plasmid, pGPΩTp. Genetic analyses and complementation studies revealed that HtrABCAL2829 was required for growth of B. cenocepacia upon exposure to osmotic stress (NaCl or KCl) and thermal stress (44°C). In addition, replacement of the serine residue in the active site with alanine (S245A) and deletion of the HtrABCAL2829 PDZ domains demonstrated that these areas are required for protein function. HtrABCAL2829 also localizes to the periplasmic compartment, as shown by Western blot analysis and a colicin V reporter assay. Using the rat agar bead model of chronic lung infection, we also demonstrated that inactivation of the htrA gene is associated with a bacterial survival defect in vivo. Together, our data demonstrate that HtrABCAL2829 is a virulence factor in B. cenocepacia.


The Journal of Infectious Diseases | 2000

Immunization with a Pseudomonas aeruginosa Elastase Peptide Reduces Severity of Experimental Lung Infections Due to P. aeruginosa or Burkholderia cepacia

Pamela A. Sokol; Cora Kooi; Robert S. Hodges; P. Cachia; D. E. Woods

Pseudomonas aeruginosa and Burkholderia cepacia produce metalloproteases that effect lung injury. Two epitopes (peptides 15 and 42) previously identified on P. aeruginosa elastase induce the production of antibodies that neutralize protease activity. The effects of immunization with synthetic peptides based on these epitopes on experimental lung infections due to P. aeruginosa or B. cepacia were examined. Rats were immunized with peptides conjugated to keyhole limpet hemocyanin or tetanus toxoid before infection. Immunization with peptide 15 (pep15) resulted in a decrease in total cells and polymorphonuclear leukocytes in bronchoalveolar lavage (BAL) fluid and a 50%-70% decrease in lung histopathologic changes, compared with findings in controls. Immunization with peptide 42 decreased cells in BAL fluid but did not decrease lung pathologic changes. Immunization with pep15 alone was just as effective in protecting against lung injury as immunization with a combination of both peptides. These studies suggest that immunization with pep15 can reduce the severity of lung infections due to P. aeruginosa or B. cepacia.


Virology | 1991

Differentiation of acid-ph-dependent and -nondependent entry pathways for mouse hepatitis virus

Cora Kooi; Marguerite Cervin; Robert Anderson

Abstract Early events of infection of MHV were studied in comparison with those of VSV, which is known to enter cells by an endocytic pathway. Treatment of mouse L-2 fibroblasts with ammonium chloride, chloroquine, or dansylcadaverine inhibited infection of MHV to a much lesser degree than that of VSV, suggesting a relatively minor role for the endocytic pathway and functional endosomes in MHV infection. Endocytosis of MHV and VSV into L-2 cells was assayed by the recovery of infectious (i.e., not uncoated) viruses from homogenates of cells harvested within the first few minutes of infection (and treated with protease to remove surface-bound virus). The results thus suggest that while a small proportion of the MHV inoculum is internalized by endocytosis, productive infection does not depend on functional endocytosis as utilized by VSV. Studies on direct virion-mediated cell fusion showed that MHV can induce fusion at pH 7.4, whereas VSV causes fusion at pH 5.0. Taken together, the above results suggest that MHV enters L-2 cells predominantly by membrane fusion with a non-acidified compartment such as the plasma membrane, endocytic vesicles, or endosomes (prior to their acidification). Results obtained from cell lines which differed in permissiveness to MHV infection suggested that the ability to support MHV infection does not correlate with endocytosis. Rather, nonpermissive cells, such as rat astrocytoma (C-6) and Vero cells, showed higher levels of recoverable internalized MHV than did fully permissive L-2 cells. Cells which are normally nonpermissive to MHV, could be rendered MHV-susceptible by PEG-induced fusion of cell surface-bound virus. Such PEG-mediated susceptibility to MHV infection was insensitive to inhibition by ammonium chloride, supporting the idea that host cell restriction of MHV infection in C-6 and Vero cells may be due to a block in nonendosomal membrane fusion. Thus endocytic internalization of MHV, which clearly occurs in a variety of cells, does not guarantee productive infection.


Infection and Immunity | 2000

Identification of a Siderophore Receptor Required for Ferric Ornibactin Uptake in Burkholderia cepacia

Pamela A. Sokol; P. Darling; Shawn Lewenza; C. R. Corbett; Cora Kooi

ABSTRACT Ornibactins are linear hydroxamate siderophores produced byBurkholderia cepacia with peptide structures similar to that of pyoverdines produced by the fluorescent pseudomonads. The gene encoding the outer membrane receptor (orbA) was identified, sequenced, and demonstrated to have significant homology with hydroxamate receptors produced by other organisms. The orbAprecursor was predicted to be a protein with a molecular mass of 81 kDa. An orbA mutant was constructed and demonstrated to be unable to take up 59Fe-ornibactins or to grow in medium supplemented with ornibactins. Outer membrane protein profiles from the parent strain, K56-2, revealed an iron-regulated outer membrane protein of 78 kDa that was not detectable in the K56orbA::tp mutant. When this mutant harbored a plasmid containing the orbA gene, the 78-kDa protein was present in the outer membrane protein profiles and the mutant was able to utilize ornibactin to acquire iron. The orbA mutant was less virulent in a chronic respiratory infection model than the parent strain, indicating that ornibactin uptake and utilization are important in the pathogenesis of B. cepacia respiratory infections.


PLOS ONE | 2012

Cigarette Smoke Modulates Expression of Human Rhinovirus-Induced Airway Epithelial Host Defense Genes

David Proud; Magdalena H. Hudy; Shahina Wiehler; Raza S. Zaheer; Minaa A. Amin; Jonathan B. Pelikan; Claire E. Tacon; Tabitha O. Tonsaker; Brandie L. Walker; Cora Kooi; Suzanne L. Traves; Richard Leigh

Human rhinovirus (HRV) infections trigger acute exacerbations of chronic obstructive pulmonary disease (COPD) and asthma. The human airway epithelial cell is the primary site of HRV infection and responds to infection with altered expression of multiple genes, the products of which could regulate the outcome to infection. Cigarette smoking aggravates asthma symptoms, and is also the predominant risk factor for the development and progression of COPD. We, therefore, examined whether cigarette smoke extract (CSE) modulates viral responses by altering HRV-induced epithelial gene expression. Primary cultures of human bronchial epithelial cells were exposed to medium alone, CSE alone, purified HRV-16 alone or to HRV-16+ CSE. After 24 h, supernatants were collected and total cellular RNA was isolated. Gene array analysis was performed to examine mRNA expression. Additional experiments, using real-time RT-PCR, ELISA and/or western blotting, validated altered expression of selected gene products. CSE and HRV-16 each induced groups of genes that were largely independent of each other. When compared to gene expression in response to CSE alone, cells treated with HRV+CSE showed no obvious differences in CSE-induced gene expression. By contrast, compared to gene induction in response to HRV-16 alone, cells exposed to HRV+CSE showed marked suppression of expression of a number of HRV-induced genes associated with various functions, including antiviral defenses, inflammation, viral signaling and airway remodeling. These changes were not associated with altered expression of type I or type III interferons. Thus, CSE alters epithelial responses to HRV infection in a manner that may negatively impact antiviral and host defense outcomes.


Journal of Bacteriology | 2005

Functional analysis of the Burkholderia cenocepacia ZmpA metalloprotease.

Cora Kooi; C. R. Corbett; Pamela A. Sokol

Burkholderia cenocepacia ZmpA is expressed as a preproenzyme typical of thermolysin-like proteases such as Pseudomonas aeruginosa LasB and Bacillus thermoproteolyticus thermolysin. The zmpA gene was expressed using the pPRO-EXHTa His(6) tag expression system, which incorporates a six-His tag at the N-terminal end of the protein, and recombinant ZmpA was purified using Ni-nitrilotriacetic acid affinity chromatography. Upon refolding of the recombinant His(6)-pre-pro-ZmpA (62 kDa), the fusion protein was autoproteolytically cleaved into 36-kDa (mature ZmpA) and 27-kDa peptides. Site-directed mutagenesis was employed to infer the identity of the active site residues of ZmpA and to confirm that the enzyme undergoes autoproteolytic cleavage. Oligonucleotide mutagenesis was used to replace H(465) with G(465) or A(465), E(377) with A(377) or D(377), or H(380) with P(380) or A(380). Mutagenesis of H(465), E(377), or H(380) resulted in the loss of both autocatalytic activity and proteolytic activity. ZmpA with either substitution in H(380) was not detectable in B. cenocepacia cell extracts. The activity of the recombinant ZmpA was inhibited by EDTA and 1,10 phenanthroline, indicating that it is a zinc metalloprotease. ZmpA, however, was not inhibited by phosphoramidon, a classical inhibitor of the thermolysin-like proteases. The refolded mature ZmpA enzyme was proteolytically active against various substrates including hide powder azure, type IV collagen, fibronectin, neutrophil alpha-1 proteinase inhibitor, alpha(2)-macroglobulin, and gamma interferon, suggesting that B. cenocepacia ZmpA may cause direct tissue damage to the host or damage to host tissues through a modulation of the hosts immune system.


Journal of Bacteriology | 2005

Distribution and Expression of the ZmpA Metalloprotease in the Burkholderia cepacia Complex

S. Gingues; Cora Kooi; Michelle B. Visser; Benchamas Subsin; Pamela A. Sokol

The distribution of the metalloprotease gene zmpA was determined among strains of the Burkholderia cepacia complex (Bcc). The zmpA gene was present in B. cepacia, B. cenocepacia, B. stabilis, B. ambifaria and B. pyrrocinia but absent from B. multivorans, B. vietnamiensis, B. dolosa, and B. anthina. The presence of zmpA generally correlated with extracellular proteolytic activity with the exception of five strains, which had zmpA but had no detectable proteolytic activity when skim milk agar was used as a substrate (zmpA protease deficient). Western immunoblot experiments with anti-ZmpA antibodies suggest that the zmpA protease-deficient strains do not secrete or accumulate detectable ZmpA. Transcriptional zmpA::lacZ fusions were introduced in selected strains of the Bcc. zmpA::lacZ was expressed in all strains, but expression was generally lower in the zmpA protease-deficient strains than in the zmpA protease-proficient strains. Quantitative reverse transcriptase real-time PCR demonstrated that zmpA protease-deficient strains did express zmpA mRNA, although at various levels. ZmpA has previously been shown to be positively regulated by the CepIR quorum-sensing system. Addition of exogenous AHLs did not restore extracellular protease production to any of the zmpA protease-deficient strains; however, introduction of cepR in trans complemented protease activity in two of five strains. Extracellular proteolytic activity was restored by the presence of zmpA in trans in two of the five strains. These studies suggest that although some strains of the Bcc contain the zmpA gene, multiple factors may influence its expression.

Collaboration


Dive into the Cora Kooi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Suzanne L. Traves

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Miguel A. Valvano

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge