Coralie Berteloite
University of Rennes
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Coralie Berteloite.
Physical Review Letters | 2010
Coralie Berteloite; M. Lara; Astrid Bergeat; Sébastien D. Le Picard; Fabrice Dayou; Kevin M. Hickson; André Canosa; Christian Naulin; Jean-Michel Launay; Ian R. Sims; Michel Costes
We report combined studies on the prototypical S(1D2) + H2 insertion reaction. Kinetics and crossed-beam experiments are performed in experimental conditions approaching the cold energy regime, yielding absolute rate coefficients down to 5.8 K and relative integral cross sections to collision energies as low as 0.68 meV. They are supported by quantum calculations on a potential energy surface treating long-range interactions accurately. All results are consistent and the excitation function behavior is explained in terms of the cumulative contribution of various partial waves.
Journal of Physical Chemistry A | 2009
Francesca Leonori; Raffaele Petrucci; Nadia Balucani; Piergiorgio Casavecchia; Marzio Rosi; Dimitris Skouteris; Coralie Berteloite; Sébastien D. Le Picard; André Canosa; Ian R. Sims
The reaction between sulfur atoms in the first electronically excited state, S((1)D), and ethene (C(2)H(4)) has been investigated in a complementary fashion in (a) crossed-beam dynamic experiments with mass spectrometric detection and time-of-flight (TOF) analysis at two collision energies (37.0 and 45.0 kJ mol(-1)), (b) low temperature kinetics experiments ranging from 298 K down to 23 K, and (c) electronic structure calculations of stationary points and product energetics on the C(2)H(4)S singlet and triplet potential energy surfaces. The rate coefficients for total loss of S((1)D) are found to be very large (ca. 4 x 10(-10) cm(3) molecule(-1) s(-1)) down to very low temperatures indicating that the overall reaction is barrierless. From laboratory angular and TOF distributions at different product masses, three competing reaction channels leading to H + CH(2)CHS (thiovinoxy), H(2) + CH(2)CS (thioketene), and CH(3) + HCS (thioformyl) have been unambiguously identified and their dynamics characterized. Product branching ratios have also been estimated. Interpretation of the experimental results on the reaction kinetics and dynamics is assisted by high-level theoretical calculations on the C(2)H(4)S singlet potential energy surface. RRKM (Rice-Ramsperger-Kassel-Marcus) estimates of the product branching ratios using the newly developed singlet potential energy surface have also been performed and compared with the experimental determinations.
Physical Chemistry Chemical Physics | 2010
Coralie Berteloite; Sébastien D. Le Picard; Nadia Balucani; André Canosa; Ian R. Sims
The kinetics of the reactions of the linear butadiynyl radical, C4H (CCCCH), with a variety of unsaturated hydrocarbons have been studied over the temperature range of 39-300 K using a CRESU (Cinétique de Réaction en Ecoulement Supersonique Uniforme, or reaction kinetics in uniform supersonic flow) apparatus combined with the pulsed laser photolysis-laser induced fluorescence technique. The rate coefficients for all the reactions studied are found to all be in excess of 10(-10) cm(3) molecule(-1) s(-1) over the entire temperature range. They can be fitted with the following expressions (valid from 39 K to 300 K, with RMS deviations of the experimental points from the predicted values shown, to which should be added 10% possible systematic error) for reaction of C4H with alkenes: k(C2H4) = (1.95 +/- 0.17) x 10(-10) (T/298 K)(-0.40) exp(9.4 K/T) cm3 molecule(-1) s(-1); k(C3H6) = (3.25 +/- 0.12) x 10(-10) (T/298 K)(-0.84) exp(-48.9 K/T) cm3 molecule(-1) s(-1); k(1-C4H8) = (6.30 +/- 0.35) x 10(-10) (T/298 K)(-0.61) exp(-65.0 K/T) cm3 molecule(-1) s(-1), for reaction of C4H with dienes: k(C3H4) = (3.70 +/- 0.34) x 10(-10) (T/298 K)(-1.18) exp(-91.1 K/T) cm3 molecule(-1) s(-1); k(1,3-C4H6) = (5.37 +/- 0.30) x 10(-10) (T/298 K)(-1.25) exp(-116.8 K/T) cm3 molecule(-1) s(-1), and for reaction of C4H with alkynes: k(C2H2) = (1.82 +/- 0.19) x 10(-10) (T/298 K)(-1.06) exp(-65.9 K/T) cm3 molecule(-1) s(-1); k(C3H4) = (3.20 +/- 0.08) x 10(-10) (T/298 K)(-0.82) exp(-47.5 K/T) cm3 molecule(-1) s(-1); k(1-C4H6) = (3.48 +/- 0.14) x 10(-10) (T/298 K)(-0.65) exp(-58.4 K/T) cm3 molecule(-1) s(-1). Possible reaction mechanisms and product channels are discussed in detail for each of these reactions. Potential implications of these results for models of low temperature chemical environments, in particular cold interstellar clouds and star-forming regions, are considered.
Physical Chemistry Chemical Physics | 2010
Coralie Berteloite; Sébastien D. Le Picard; Nadia Balucani; André Canosa; Ian R. Sims
The kinetics of the reactions of the linear butadiynyl radical, C4H (CCCCH), with methane, ethane, propane and butane have been studied over the temperature range of 39-300 K using a CRESU (Cinétique de Réaction en Ecoulement Supersonique Uniforme or Reaction Kinetics in Uniform Supersonic Flow) apparatus combined with the pulsed laser photolysis-laser induced fluorescence technique. The rate coefficients, except for the reaction with methane, show a negative temperature dependence and can be fitted with the following expressions over the temperature range of this study: k(C2H6) = 0.289 x 10(-10) (T/298 K)(-1.23) exp(-24.8 K/T) cm3 molecule(-1) s(-1); k(C3H8) = 1.06 x 10(-10) (T/298 K)(-1.36) exp(-56.9 K/T) cm3 molecule(-1) s(-1); k(C4H10) = 2.93 x 10(-10) (T/298 K)(-1.30) exp(-90.1 K/T) cm3 molecule(-1) s(-1). The rate coefficients for the reaction with methane were measured only at 200 K and 300 K yielding a positive temperature dependence: k(CH4) = 1.63 x 10(-11) exp(-610 K/T) cm3 molecule(-1) s(-1). Possible reaction mechanisms and product channels are discussed in detail for each of these reactions. Potential implications of these results for models of low temperature chemical environments, in particular cold interstellar clouds and planetary atmospheres such as that of Titan, are considered.
Physical Chemistry Chemical Physics | 2009
Francesca Leonori; Raffaele Petrucci; Nadia Balucani; Piergiorgio Casavecchia; Marzio Rosi; Coralie Berteloite; Sébastien D. Le Picard; André Canosa; Ian R. Sims
The reaction between excited sulfur atoms, S((1)D), and the simplest alkene molecule, ethene, has been investigated in a complementary fashion in (a) crossed-beam dynamic experiments with mass spectrometric detection and time-of-flight (TOF) analysis at a collision energy of 37.0 kJ mol(-1), (b) low temperature kinetic experiments ranging from room temperature down to 23 K, and (c) electronic structure calculations of stationary points and product energetics on the C(2)H(4)S singlet potential energy surface. The rate coefficients for total loss of S((1)D) are found to be very large (ca. 4 x 10(-10) cm(3) molecule(-1) s(-1)) down to very low temperature indicating that the overall reaction is barrier-less. From laboratory angular and TOF distributions at different product masses, three competing reaction channels leading to H + CH(2)CHS (thiovinoxy), H(2) + CH(2)CS (thioketene), and CH(3) + HCS (thioformyl) have been unambiguously identified and their dynamics characterized. Branching ratios have also been estimated. These studies, which exploit the capability of producing intense supersonic beams of sulfur S((3)P,(1)D) atoms and measuring rate coefficients down to very low temperature, offer considerable promise for further dynamical investigations of other sulfur atom reactions of particular relevance to combustion and atmospheric chemistry.
Proceedings of the International Astronomical Union | 2008
M.-C. Gazeau; Yves Benilan; Et. Es-sebbar; T. Ferradaz; Eric Hébrard; Antoine Jolly; F. Raulin; C. Romanzin; J-C. Guillemin; Coralie Berteloite; A. Canosa; S. D. Le Picard; Ian R. Sims
To interpret the concentrations of the products measured in Titan’s atmosphere and to better understand the associated chemistry, many theoretical models have been developed so far. Unfortunately, large discrepancies are still found between theoretical and observational data. A critical examination of the chemical scheme included in these models points out some problems regarding the reliability of the description of critical reaction pathways as well as the accuracy of kinetic parameters. Laboratory experiments can be used to reduce these two sources of uncertainty. It can be: i) experimental simulations: in our laboratory (LISA), representative Titan’s simulation experiments are planned to be carried out in a reactor where the initial gas mixture will be exposed, for the first time, to both electrons and photons. Thus, the chemistry between N atoms and CH3 , CH2 , CH fragments, issued from electron dissociation of N2 and photo-dissociation of CH4 respectively, will be initiated. Thank to a time resolved technique, we will be able to analyse “in situ”, qualitatively and quantitatively, the stable species as well as the short life intermediates. Then, the implied chemistry will be determined precisely, and consequently, its description will be refined in theoretical models. The current status of this program will be given. ii) specific experiments: they are devoted, for example, to determine kinetic rate constants and low temperature VUV spectra that will be used to feed models and to interpret observational data. Such experiments performed in LISA and in Rennes’ laboratory concern polyynes and cyanopolyynes as these compounds could link the gaseous and the solid phase in planetary atmosphere. Results concerning C4H hydrocarbons kinetic rate constants and VUV cross section of HC3N and HC5N will be detailed.
Nature Chemistry | 2014
Meryem Tizniti; Sébastien D. Le Picard; François Lique; Coralie Berteloite; André Canosa; Millard H. Alexander; Ian R. Sims
Icarus | 2008
Coralie Berteloite; Sébastien D. Le Picard; Petre Birza; Marie-Claire Gazeau; André Canosa; Yves Benilan; Ian R. Sims
Physical Chemistry Chemical Physics | 2011
Coralie Berteloite; Sébastien D. Le Picard; Ian R. Sims; Marzio Rosi; Francesca Leonori; Raffaele Petrucci; Nadia Balucani; Xingan Wang; Piergiorgio Casavecchia
Physical Chemistry Chemical Physics | 2017
Manuel Lara; Coralie Berteloite; Miguel Paniagua; F. Dayou; S. D. Le Picard; Jean-Michel Launay