Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Coralie Bingham is active.

Publication


Featured researches published by Coralie Bingham.


American Journal of Human Genetics | 2001

Mutations in the Hepatocyte Nuclear Factor-1β Gene Are Associated with Familial Hypoplastic Glomerulocystic Kidney Disease

Coralie Bingham; Michael P. Bulman; Sian Ellard; Lisa I. S. Allen; Graham Lipkin; William van’t Hoff; Adrian S. Woolf; Gianfranco Rizzoni; Giuseppe Novelli; Anthony J. Nicholls; Andrew T. Hattersley

Familial glomerulocystic kidney disease (GCKD) is a dominantly inherited condition characterized by glomerular cysts and variable renal size and function; the molecular genetic etiology is unknown. Mutations in the gene encoding hepatocyte nuclear factor (HNF)-1beta have been associated with early-onset diabetes and nondiabetic renal disease-particularly renal cystic disease. We investigated a possible role for the HNF-1beta gene in four unrelated GCKD families and identified mutations in two families: a nonsense mutation in exon 1 (E101X) and a frameshift mutation in exon 2 (P159fsdelT). The family members with HNF-1beta gene mutations had hypoplastic GCKD and early-onset diabetes or impaired glucose tolerance. We conclude that there is genetic heterogeneity in familial GCKD and that the hypoplastic subtype is a part of the clinical spectrum of the renal cysts and diabetes syndrome that is associated with HNF-1beta mutations.


Journal of Medical Genetics | 2006

Mutations in hepatocyte nuclear factor-1beta and their related phenotypes.

Emma L. Edghill; Coralie Bingham; Sian Ellard; Andrew T. Hattersley

Background: Hepatocyte nuclear factor-1 beta (HNF-1β) is a widely distributed transcription factor which plays a critical role in embryonic development of the kidney, pancreas, liver, and Mullerian duct. Thirty HNF-1β mutations have been reported in patients with renal cysts and other renal developmental disorders, young-onset diabetes, pancreatic atrophy, abnormal liver function tests, and genital tract abnormalities. Methods: We sequenced the HNF-1β gene in 160 unrelated subjects with renal disease, 40% of whom had a personal/family history of diabetes. Results: Twenty three different heterozygous HNF-1β mutations were identified in 23/160 subjects (14%), including 10 novel mutations (V61G, V110G, S148L, K156E, Q176X, R276Q, S281fsinsC, R295P, H324fsdelCA, Q470X). Seven (30%) cases were proven to be due to de novo mutations. Renal cysts were found in 19/23 (83%) patients (four with glomerulocystic kidney disease, GCKD) and diabetes in 11/23 (48%, while three other families had a family history of diabetes. Only 26% of families met diagnostic criteria for maturity-onset diabetes of the young (MODY) but 39% had renal cysts and diabetes (RCAD). We found no clear genotype/phenotype relationships. Conclusion: We report the largest series to date of HNF-1β mutations and confirm HNF-1β mutations as an important cause of renal disease. Despite the original description of HNF-1β as a MODY gene, a personal/family history of diabetes is often absent and the most common clinical manifestation is renal cysts. Molecular genetic testing for HNF-1β mutations should be considered in patients with unexplained renal cysts (including GCKD), especially when associated with diabetes, early-onset gout, or uterine abnormalities.


Journal of The American Society of Nephrology | 2009

HNF1B Mutations Associate with Hypomagnesemia and Renal Magnesium Wasting

S Adalat; Adrian S. Woolf; Karen A. Johnstone; Andrea Wirsing; Lorna W. Harries; David A. Long; Raoul C. M. Hennekam; Sarah E. Ledermann; Lesley Rees; William van’t Hoff; Stephen D. Marks; Richard S. Trompeter; Kjell Tullus; Paul J.D. Winyard; Janette Cansick; Imran Mushtaq; Harjeeta K. Dhillon; Coralie Bingham; Emma L. Edghill; Rukshana Shroff; Horia Stanescu; Gerhart U. Ryffel; Sian Ellard; Detlef Bockenhauer

Mutations in hepatocyte nuclear factor 1B (HNF1B), which is a transcription factor expressed in tissues including renal epithelia, associate with abnormal renal development. While studying renal phenotypes of children with HNF1B mutations, we identified a teenager who presented with tetany and hypomagnesemia. We retrospectively reviewed radiographic and laboratory data for all patients from a single center who had been screened for an HNF1B mutation. We found heterozygous mutations in 21 (23%) of 91 cases of renal malformation. All mutation carriers had abnormal fetal renal ultrasonography. Plasma magnesium levels were available for 66 patients with chronic kidney disease (stages 1 to 3). Striking, 44% (eight of 18) of mutation carriers had hypomagnesemia (<1.58 mg/dl) compared with 2% (one of 48) of those without mutations (P < 0.0001). The median plasma magnesium was significantly lower among mutation carriers than those without mutations (1.68 versus 2.02 mg/dl; P < 0.0001). Because hypermagnesuria and hypocalciuria accompanied the hypomagnesemia, we analyzed genes associated with hypermagnesuria and detected highly conserved HNF1 recognition sites in FXYD2, a gene that can cause autosomal dominant hypomagnesemia and hypocalciuria when mutated. Using a luciferase reporter assay, we demonstrated HNF1B-mediated transactivation of FXYD2. These results extend the phenotype of HNF1B mutations to include hypomagnesemia. HNF1B regulates transcription of FXYD2, which participates in the tubular handling of Mg(2+), thus describing a role for HNF1B not only in nephrogenesis but also in the maintenance of tubular function.


Journal of The American Society of Nephrology | 2003

Distinct Molecular and Morphogenetic Properties of Mutations in the Human HNF1β Gene That Lead to Defective Kidney Development

Silvia Bohn; Heike Thomas; Gülüzar Turan; Sian Ellard; Coralie Bingham; Andrew T. Hattersley; Gerhart U. Ryffel

The homeobox transcription factor hepatocyte nuclear factor 1beta (HNF1beta) is a tissue-specific regulator that plays an essential role in early vertebrate development. In humans, heterozygous mutations in the HNF1beta gene are associated with young-onset diabetes as well as a variety of disorders of renal development with cysts as the most consistent feature. This report compares and classifies nine different HNF1beta mutations that lead in humans to distinct renal diseases, including solitary functioning kidney, renal dysplasia, glomerulocystic kidney disease, and oligomeganephronia. Analysis of these mutants in vitro identifies mutants that either retain or lack DNA binding. Investigation of the transactivation potential in transfected cell lines reveals a strict correlation between DNA binding and transactivation. Introduction of these mutants into developing Xenopus embryos shows that these mutants interfere with pronephros development, the first kidney form in amphibian. Whereas three mutants lead in Xenopus to a reduction or agenesis of the pronephric tubules and the anterior part of the duct, six mutants generate an enlargement of the pronephric structures. The differential morphogenetic potential in the developing embryo does not strictly correlate with the properties observed in vitro or in transfected cell lines. This suggests that the functional test in the developing embryo defines features of the HNF1beta protein that cannot be assessed in cell cultures. The distinct properties observed in the various HNF1beta mutants may guide the classification of the phenotypes observed in patients with a mutated HNF1beta gene.


Nature Reviews Nephrology | 2015

HNF1B-associated renal and extra-renal disease—an expanding clinical spectrum

Rhian L. Clissold; Alexander Hamilton; Andrew T. Hattersley; Sian Ellard; Coralie Bingham

Heterozygous mutations in the gene that encodes the transcription factor hepatocyte nuclear factor 1β (HNF1B) represent the most common known monogenic cause of developmental kidney disease. Renal cysts are the most frequently detected feature of HNF1B-associated kidney disease; however, other structural abnormalities, including single kidneys and renal hypoplasia, and electrolyte abnormalities can also occur. Extra-renal phenotypes might also be observed; consequently, HNF1B-associated disease is considered a multi-system disorder. Other clinical features include early-onset diabetes mellitus, pancreatic hypoplasia, genital tract malformations, abnormal liver function and early-onset gout. Heterozygous mutations in the coding region or splice sites of HNF1B, and complete gene deletion, each account for ∼50% of all cases of HNF1B-associated disease, respectively, and often arise spontaneously. There is no clear genotype–phenotype correlation, consistent with haploinsufficiency as the disease mechanism. Data from animal models suggest that HNF1B has an important function during several stages of nephrogenesis; however, the precise signalling pathways remain to be elucidated. This Review discusses the genetics and molecular pathways that lead to disease development, summarizes the reported renal and extra-renal phenotypes, and identifies areas for future research in HNF1B-associated disease.


Human Genetics | 2005

The position of premature termination codons in the hepatocyte nuclear factor −1 beta gene determines susceptibility to nonsense-mediated decay

Lorna W. Harries; Coralie Bingham; Christine Bellanné-Chantelot; Andrew T. Hattersley; Sian Ellard

The nonsense-mediated decay (NMD) pathway is an mRNA surveillance mechanism that detects and degrades transcripts containing premature termination codons. The position of a truncating mutation can govern the resulting phenotype as mutations in the last exon evade NMD. In this study we investigated the susceptibility to NMD of six truncating HNF-1beta mutations by allele-specific quantitative real-time PCR using transformed lymphoblastoid cell lines. Four of six mutations (R181X, Q243fsdelC, P328L329fsdelCCTCT and A373fsdel29) showed evidence of NMD with levels of mutant transcript at 71% (p=0.009), 24% (p=0.008), 22% (p=0.008) and 3% (p=0.016) of the wild-type allele respectively. Comparable results were derived from lymphoblastoid cells and renal tubule cells isolated from a patient’s overnight urine confirming that cell lines provide a good model for mRNA analysis. Two mutations (H69fsdelAC and P159fsdelT) produced transcripts unexpectedly immune to NMD. We conclude that truncating mutant transcripts of the HNF-1beta gene do not conform to the known rules governing NMD susceptibility, but instead demonstrate a previously unreported 5′ to 3′ polarity. We hypothesise that this may be due to reinitiation of translation downstream of the premature termination codon. Our study suggests that reinitiation of translation may be an important mechanism in the evasion of NMD, but that other factors such as the distance from the native initiation codon may also play a part.


American Journal of Obstetrics and Gynecology | 2010

Mutations in the hepatocyte nuclear factor-1β (HNF1B) gene are common with combined uterine and renal malformations but are not found with isolated uterine malformations.

Richard A. Oram; Emma L. Edghill; Jenny Blackman; Miles J.O. Taylor; Tracey Kay; Sarah E. Flanagan; Ida Ismail-Pratt; Sarah M. Creighton; Sian Ellard; Andrew T. Hattersley; Coralie Bingham

OBJECTIVE Congenital uterine abnormalities are common and may be associated with developmental renal abnormalities. Mutations of the hepatocyte nuclear factor-1β (HNF1B) gene are associated with renal and uterine abnormalities. We aimed to study the role of HNF1B mutations in a cohort with congenital uterine abnormalities. STUDY DESIGN We tested 108 probands with uterine abnormalities for HNF1B mutations. We collected clinical information from patient records. RESULTS Nine of 108 women (8%) had a mutation or deletion in the HNF1B gene. Abnormal HNF1B was found in 18% of the 50 probands who had both uterine and renal abnormalities but in none of the 58 women with isolated uterine abnormalities. CONCLUSION Mutations of the HNF1B gene are found in women with both uterine and renal abnormalities but are rare in isolated uterine abnormalities. We suggest that HNF1B testing should be performed in patients with both renal and uterine abnormalities, but not in patients with isolated uterine abnormalities.


Diabetologia | 2004

Abnormal splicing of hepatocyte nuclear factor-1 beta in the renal cysts and diabetes syndrome

Lorna W. Harries; Sian Ellard; Robert W.A Jones; Andrew T. Hattersley; Coralie Bingham

AbstractAims/hypothesisMutations in the hepatocyte nuclear factor-1 beta (HNF-1β) gene result in disorders of renal development, typically involving renal cysts and early-onset diabetes (the RCAD syndrome/ MODY5). Sixteen mutations have been reported, including three splicing mutations of the intron 2 splice donor site. Because tissues showing abundant expression (kidney, liver, pancreas, gut, lung and gonads) are not easily accessible for analysis in living subjects, it has previously proven difficult to determine the effect of HNF-1β mutations at the mRNA level. This is the aim of the present study.MethodsWe have developed a nested RT-PCR assay that exploits the presence of ectopic HNF-1β transcripts in Epstein-Barr virus (EBV)-transformed lymphoblastoid cell lines derived from subjects carrying HNF-1β splice site mutations.ResultsWe report a fourth mutation of the intron 2 splice donor site, IVS2nt+2insT. Sequence analysis of ectopic HNF-1β transcripts showed that both IVS2nt+2insT and IVS2nt+1G>T result in the deletion of exon 2 and are predicted to result in premature termination of the HNF-1β protein. Mutant transcripts were less abundant than the normal transcripts but there was no evidence of nonsense-mediated decay.Conclusions/interpretationThis is the first study to define the pathogenic consequences of mutations within the HNF-1β gene by mRNA analysis. This type of approach is a useful and important tool to define mutational mechanisms and determine pathogenicity.


Journal of Medical Genetics | 2014

The HNF4A R76W mutation causes atypical dominant Fanconi syndrome in addition to a β cell phenotype

Alexander Hamilton; Coralie Bingham; Timothy J. McDonald; Paul Cook; Richard Caswell; Michael N. Weedon; Richard A. Oram; Beverley M. Shields; Maggie Shepherd; Carol Inward; Julian P Hamilton-Shield; Jürgen Kohlhase; Sian Ellard; Andrew T. Hattersley

Background Mutation specific effects in monogenic disorders are rare. We describe atypical Fanconi syndrome caused by a specific heterozygous mutation in HNF4A. Heterozygous HNF4A mutations cause a beta cell phenotype of neonatal hyperinsulinism with macrosomia and young onset diabetes. Autosomal dominant idiopathic Fanconi syndrome (a renal proximal tubulopathy) is described but no genetic cause has been defined. Methods and Results We report six patients heterozygous for the p.R76W HNF4A mutation who have Fanconi syndrome and nephrocalcinosis in addition to neonatal hyperinsulinism and macrosomia. All six displayed a novel phenotype of proximal tubulopathy, characterised by generalised aminoaciduria, low molecular weight proteinuria, glycosuria, hyperphosphaturia and hypouricaemia, and additional features not seen in Fanconi syndrome: nephrocalcinosis, renal impairment, hypercalciuria with relative hypocalcaemia, and hypermagnesaemia. This was mutation specific, with the renal phenotype not being seen in patients with other HNF4A mutations. In silico modelling shows the R76 residue is directly involved in DNA binding and the R76W mutation reduces DNA binding affinity. The target(s) selectively affected by altered DNA binding of R76W that results in Fanconi syndrome is not known. Conclusions The HNF4A R76W mutation is an unusual example of a mutation specific phenotype, with autosomal dominant atypical Fanconi syndrome in addition to the established beta cell phenotype.


Nephrology Dialysis Transplantation | 2008

Whole gene deletion of the hepatocyte nuclear factor-1β gene in a patient with the prune-belly syndrome

Paul J. Murray; Katie Thomas; Christopher J. Mulgrew; Sian Ellard; Emma L. Edghill; Coralie Bingham

Prune-belly syndrome is characterized by a triad of congenital anomalies: a deficiency or an absence of abdominal wall musculature, dilatation of the urinary tract and bilateral undescended testes. The complete syndrome is only present in males [1]. There are other associated conditions including pulmonary hypoplasia, renal hypoplasia, cardiac and orthopaedic anomalies, imperforate anus and intestinal malrotation and malfixation [2]. The complete prune-belly syndrome has an incidence of about 1 in 40 000 live births [3]. The aetiology of the syndrome is unknown and no consistent genetic, environmental, infectious or teratogenic factors have been identified [2]. There are two aetiological theories; the first theory proposes that severe bladder outlet obstruction early in gestation is only relieved after irreversible damage has occurred. The second theory proposes a primary defect in mesenchymal development early in gestation [1]. Hepatocyte nuclear factor-1β (HNF-1β) is a member of the homeodomain-containing superfamily of transcription factors. It is important in the tissue-specific regulation of gene expression in a number of organs including the kidney, pancreas, liver, genital tract and gut [4]. HNF-1β is also involved in the early embryogenesis of these organs [5]. Heterozygous mutations and whole gene deletions of the HNF-1β gene cause multi-system disease in man. Renal disease, typically renal cysts, is the most consistent phenotype but a wide spectrum of renal developmental disorders have been described [6,7]. Diabetes is the most common extra-renal phenotype. Diabetes is usually present in the early adulthood with a median age of 20 years (range 15 days to 61 years) and is associated with pancreatic at-

Collaboration


Dive into the Coralie Bingham's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anthony J. Nicholls

Royal Devon and Exeter Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge