Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Coralie L. Guerin is active.

Publication


Featured researches published by Coralie L. Guerin.


Cancer Research | 2013

PD-1–Expressing Tumor-Infiltrating T Cells Are a Favorable Prognostic Biomarker in HPV-Associated Head and Neck Cancer

Cécile Badoual; Stéphane Hans; Nathalie Merillon; Cordélia Van Ryswick; Patrice Ravel; Nadine Benhamouda; Emeline Levionnois; Mevyn Nizard; Ali Si-Mohamed; Nicolas Besnier; Alain Gey; Rinat Rotem-Yehudar; Hélène Péré; Thi Tran; Coralie L. Guerin; Anne Chauvat; Estelle Dransart; Cécile Alanio; Sebastien Albert; Beatrix Barry; Federico Sandoval; Françoise Quintin-Colonna; Patrick Bruneval; Wolf H. Fridman; François M. Lemoine; S. Oudard; Ludger Johannes; Daniel Olive; Daniel Brasnu; Eric Tartour

Head and neck cancers positive for human papillomavirus (HPV) have a more favorable clinical outcome than HPV-negative cancers, but it is unknown why this is the case. We hypothesized that prognosis was affected by intrinsic features of HPV-infected tumor cells or differences in host immune response. In this study, we focused on a comparison of regulatory Foxp3(+) T cells and programmed death-1 (PD-1)(+) T cells in the microenvironment of tumors that were positive or negative for HPV, in two groups that were matched for various clinical and biologic parameters. HPV-positive head and neck cancers were more heavily infiltrated by regulatory T cells and PD-1(+) T cells and the levels of PD-1(+) cells were positively correlated with a favorable clinical outcome. In explaining this paradoxical result, we showed that these PD-1(+) T cells expressed activation markers and were functional after blockade of the PD-1-PD-L1 axis in vitro. Approximately 50% of PD-1(+) tumor-infiltrating T cells lacked Tim-3 expression and may indeed represent activated T cells. In mice, administration of a cancer vaccine increased PD-1 on T cells with concomitant tumor regression. In this setting, PD-1 blockade synergized with vaccine in eliciting antitumor efficacy. Our findings prompt a need to revisit the significance of PD-1-infiltrating T cells in cancer, where we suggest that PD-1 detection may reflect a previous immune response against tumors that might be reactivated by PD-1/PD-L1 blockade.


Circulation Research | 2014

Inhibition of MicroRNA-92a Prevents Endothelial Dysfunction and Atherosclerosis in Mice

Xavier Loyer; Stephane Potteaux; Anne-Clémence Vion; Coralie L. Guerin; Sheerazed Boulkroun; Pierre-Emmanuel Rautou; Bhama Ramkhelawon; Bruno Esposito; Marion Dalloz; Jean-Louis Paul; Pierre Julia; Jean Maccario; Chantal M. Boulanger; Ziad Mallat; Alain Tedgui

Rationale for Study: MicroRNAs (miRNAs) are small noncoding RNAs that regulate protein expression at post-transcriptional level. We hypothesized that a specific pool of endothelial miRNAs could be selectively regulated by flow conditions and inflammatory signals, and as such be involved in the development of atherosclerosis. Objective: To identify miRNAs, called atheromiRs, which are selectively regulated by shear stress and oxidized low-density lipoproteins (oxLDL), and to determine their role in atherogenesis. Methods and Results: Large-scale miRNA profiling in HUVECs identified miR-92a as an atheromiR candidate, whose expression is preferentially upregulated by the combination of low shear stress (SS) and atherogenic oxLDL. Ex vivo analysis of atheroprone and atheroprotected areas of mouse arteries and human atherosclerotic plaques demonstrated the preferential expression of miR-92a in atheroprone low SS regions. In Ldlr−/− mice, miR-92a expression was markedly enhanced by hypercholesterolemia, in particular in atheroprone areas of the aorta. Assessment of endothelial inflammation in gain- and loss-of-function experiments targeting miR-92a expression revealed that miR-92a regulated endothelial cell activation by oxLDL, more specifically under low SS conditions, which was associated with modulation of Kruppel-like factor 2 (KLF2), Kruppel-like factor 4 (KLF4), and suppressor of cytokine signaling 5. miR-92a expression was regulated by signal transducer and activator of transcription 3 in SS- and oxLDL-dependent manner. Furthermore, specific in vivo blockade of miR-92a expression in Ldlr−/− mice reduced endothelial inflammation and altered the development of atherosclerosis, decreasing plaque size and promoting a more stable lesion phenotype. Conclusions: Upregulation of miR-92a by oxLDL in atheroprone areas promotes endothelial activation and the development of atherosclerotic lesions. Therefore, miR-92a antagomir seems as a new atheroprotective therapeutic strategy.


European Heart Journal | 2014

Association of circulating endothelial microparticles with cardiometabolic risk factors in the Framingham Heart Study

Nicolas Amabile; Susan Cheng; Jean Marie Renard; Martin G. Larson; Anahita Ghorbani; Elizabeth L. McCabe; Gabriel K. Griffin; Coralie L. Guerin; Jennifer E. Ho; Stanley Y. Shaw; Kenneth Cohen; Alain Tedgui; Chantal M. Boulanger; Thomas J. Wang

OBJECTIVE To examine the relation of endothelial microparticles (EMPs) with cardiometabolic risk in the community. BACKGROUND Circulating EMPs are small membrane vesicles released after endothelial cell injury. Endothelial microparticles are reportedly increased among individuals with a high burden of cardiovascular risk factors. However, prior investigations have been limited to small, highly selected samples. METHODS We studied 844 individuals without a history of cardiovascular disease in the Framingham Offspring cohort (mean age 66 ± 9 years, 57% women). We used standardized flow cytometry methods to identify and quantify circulating CD144+ and CD31+/CD41- EMPs. We then used multivariable regression analyses to investigate the relations of EMP phenotypes with cardiovascular and metabolic risk factors. RESULTS In multivariable analyses, the following cardiovascular risk factors were associated with one or more of the circulating EMP populations: hypertension (P = 0.025 for CD144+,), elevated triglycerides (P = 0.002 for CD144+, P < 0.0001 for CD31+/CD41-), and metabolic syndrome (P < 0.0001 for CD144+,). Overall, each tertile increase in the Framingham risk score corresponded to a 9% increase in log-CD31+/CD41- EMPs (P = 0.022). Furthermore, the presence of hypertriglyceridaemic waist status was associated with 38% higher levels of CD144+ EMPs (P < 0.0001) and 46% higher levels of CD31+/CD41- EMPs (P < 0.0001). CONCLUSION In a large community-based sample, circulating EMP levels were associated with the presence of cardiometabolic risk factors, particularly dyslipidaemia. These data underscore the potential influence of high-risk metabolic profiles on endothelial integrity.


Cardiovascular Research | 2010

Regulation of monocyte subset systemic levels by distinct chemokine receptors controls post-ischaemic neovascularization

Clément Cochain; Mathieu Rodero; José Vilar; Alice Récalde; Adèle Richart; Céline Loinard; Yasmine Zouggari; Coralie L. Guerin; Micheline Duriez; Béhazine Combadière; Lucie Poupel; Bernard I. Levy; Ziad Mallat; Christophe Combadière; Jean-Sébastien Silvestre

AIMS Monocyte systemic levels are known to be a major determinant of ischaemic tissue revascularization, but the mechanisms mediating mobilization of different monocyte subsets-Ly6C(hi) and Ly6C(lo)-to the blood and their respective role in post-ischaemic neovascularization are not clearly understood. Here, we hypothesized that distinct chemokine/chemokine receptor pathways, namely CCL2/CCR2, CX3CL1/CX3CR1, and CCL5/CCR5, differentially control monocyte subset systemic levels, and might thus impact post-ischaemic vessel growth. METHODS AND RESULTS In a model of murine hindlimb ischaemia, both Ly6C(hi) and Ly6C(lo) monocyte circulating levels were increased after femoral artery ligation. CCL2/CCR2 activation enhanced blood Ly6C(hi) and Ly6C(lo) monocyte counts, although the opposite effect was seen in mice with CCL2 or CCR2 deficiency. CX3CL1/CX3CR1 strongly impacted Ly6C(lo) monocyte levels, whereas CCL5/CCR5 had no role. Only CCL2/CCR2 signalling influenced neovascularization, which was increased in mice overexpressing CCL2, whereas it markedly decreased in CCL2-/- mice. Moreover, adoptive transfer of Ly6C(hi)-but not Ly6C(lo)-monocytes enhanced vessel growth and blood flow recovery. CONCLUSION Altogether, our data demonstrate that regulation of proangiogenic Ly6C(hi) monocytes systemic levels by CCL2/CCR2 controls post-ischaemic vessel growth, whereas Ly6C(lo) monocytes have no major role in this setting.


Cytotechnology | 2012

Flow cytometry: retrospective, fundamentals and recent instrumentation

Julien Picot; Coralie L. Guerin; Caroline Le Van Kim; Chantal M. Boulanger

Flow cytometry is a complete technology given to biologists to study cellular populations with high precision. This technology elegantly combines sample dimension, data acquisition speed, precision and measurement multiplicity. Beyond the statistical aspect, flow cytometry offers the possibility to physically separate sub-populations. These performances come from the common endeavor of physicists, biophysicists, biologists and computer engineers, who succeeded, by providing new concepts, to bring flow cytometry to current maturity. The aim of this paper is to present a complete retrospective of the technique and remind flow cytometry fundamentals before focusing on recent commercial instrumentation.


Circulation | 2012

Homeostatic and Tissue Reparation Defaults in Mice Carrying Selective Genetic Invalidation of CXCL12/Proteoglycan Interactions

Patricia Rueda; Adèle Richart; Alice Récalde; Pamela Gasse; José Vilar; Coralie L. Guerin; Hugues Lortat-Jacob; Paulo José Cardoso Vieira; Frano̧ise Baleux; Fabrice Chrétien; Fernando Arenzana-Seisdedos; Jean-Sébastien Silvestre

Background— Interaction with heparan sulfate proteoglycans is supposed to provide chemokines with the capacity to immobilize on cell surface and extracellular matrix for accomplishing both tissue homing and signaling of attracted cells. However, the consequences of the exclusive invalidation of such interaction on the roles played by endogenous chemokines in vivo remain unascertained. Methods and Results— We engineered a mouse carrying a Cxcl12 gene (Cxcl12Gagtm) mutation that precludes interactions with heparan sulfate structures while not affecting CXCR4-dependent cell signaling of CXCL12 isoforms (&agr;, &bgr;, &ggr;). Cxcl12Gagtm/Gagtm mice develop normally, express normal levels of total and isoform-specific Cxcl12 mRNA, and show increased counting of circulating CD34+ hematopoietic precursor cells. After induced acute ischemia, a marked impaired capacity to support revascularization was observed in Cxcl12Gagtm/Gagtm animals associated with a reduced number of infiltrating cells in the ischemic tissue despite the massive expression of CXCL12 isoforms. Importantly, exogenous administration of CXCL12&ggr;, which binds heparan sulfate with the highest affinity ever reported for a cytokine, fully restores vascular growth, whereas heparan sulfate–binding CXCL12&ggr; mutants failed to promote revascularization in Cxcl12Gagtm/Gagtm animals. Conclusion— These findings prove the role played by heparan sulfate interactions in the functions of CXCL12 in both homeostasis and physiopathological settings and document for the first time the paradigm of chemokine immobilization in vivo.


Thrombosis and Haemostasis | 2015

Bone-marrow-derived very small embryonic-like stem cells in patients with critical leg ischaemia: evidence of vasculogenic potential

Coralie L. Guerin; Xavier Loyer; José Vilar; Audrey Cras; Tristan Mirault; Pascale Gaussem; Jean-Sébastien Silvestre; David M. Smadja

Very small embryonic-like stem cells (VSELs) are multipotent stem cells localised in adult bone marrow (BM) that may be mobilised into peripheral blood (PB) in response to tissue injury. We aimed to quantify VSELs in BM and PB of patients with critical limb ischaemia (CLI) and to test their angiogenic potential in vitro as well as their therapeutic capacity in mouse model of CLI. We isolated BM VSELs from patients with CLI and studied their potential to differentiate into vascular lineages. Flow and imaging cytometry showed that VSEL counts were lower in BM (p< 0.001) and higher (p< 0.001) in PB from CLI patients compared to healthy controls, suggesting that ischaemia may trigger VSELs mobilisation in this patient population. Sorted BM-VSELs cultured in angiogenic media acquired a mesenchymal phenotype (CD90+, Thy-1 gene positive expression). VSEL-derived cells had a pattern of secretion similar to that of endothelial progenitor cells, as they released low levels of VEGF-A and inflammatory cytokines. Noteworthy, VSELs triggered post-ischaemic revascularisation in immunodeficient mice (p< 0.05 vs PBS treatment), and acquired an endothelial phenotype either in vitro when cultured in the presence of VEGF-B (Cdh-5 gene positive expression), or in vivo in Matrigel implants (human CD31+ staining in neo-vessels from plug sections). In conclusion, VSELs are a potential new source of therapeutic cells that may give rise to cells of the endothelial lineage in humans.


Gut | 2016

Liver microRNA-21 is overexpressed in non-alcoholic steatohepatitis and contributes to the disease in experimental models by inhibiting PPARα expression

Xavier Loyer; Valérie Paradis; Carole Hénique; Anne-Clémence Vion; Nathalie Colnot; Coralie L. Guerin; Cécile Devue; Sissi On; Jérémy Scetbun; Mélissa Romain; Jean-Louis Paul; Marc E. Rothenberg; Patrick Marcellin; François Durand; Pierre Bedossa; Carina Prip-Buus; Eric Baugé; Bart Staels; Chantal M. Boulanger; Alain Tedgui; Pierre-Emmanuel Rautou

Objective Previous studies suggested that microRNA-21 may be upregulated in the liver in non-alcoholic steatohepatitis (NASH), but its role in the development of this disease remains unknown. This study aimed to determine the role of microRNA-21 in NASH. Design We inhibited or suppressed microRNA-21 in different mouse models of NASH: (a) low-density lipoprotein receptor-deficient (Ldlr−/−) mice fed a high-fat diet and treated with antagomir-21 or antagomir control; (b) microRNA-21-deficient and wild-type mice fed a methionine-choline-deficient (MCD) diet; (c) peroxisome proliferation-activator receptor α (PPARα)-deficient mice fed an MCD diet and treated with antagomir-21 or antagomir control. We assessed features of NASH and determined liver microRNA-21 levels and cell localisation. MicroRNA-21 levels were also quantified in the liver of patients with NASH, bland steatosis or normal liver and localisation was determined. Results Inhibiting or suppressing liver microRNA-21 expression reduced liver cell injury, inflammation and fibrogenesis without affecting liver lipid accumulation in Ldlr−/− fed a high-fat diet and in wild-type mice fed an MCD diet. Liver microRNA-21 was overexpressed, primarily in biliary and inflammatory cells, in mouse models as well as in patients with NASH, but not in patients with bland steatosis. PPARα, a known microRNA-21 target, implicated in NASH, was decreased in the liver of mice with NASH and restored following microRNA-21 inhibition or suppression. The effect of antagomir-21 was lost in PPARα-deficient mice. Conclusions MicroRNA-21 inhibition or suppression decreases liver injury, inflammation and fibrosis, by restoring PPARα expression. Antagomir-21 might be a future therapeutic strategy for NASH.


Radiology | 2012

Endothelial Cell–derived Microparticles Loaded with Iron Oxide Nanoparticles: Feasibility of MR Imaging Monitoring in Mice

Achraf Al Faraj; Florence Gazeau; Claire Wilhelm; Cécile Devue; Coralie L. Guerin; Christine Péchoux; Valérie Paradis; Olivier Clément; Chantal M. Boulanger; Pierre-Emmanuel Rautou

PURPOSE To assess the feasibility of loading iron oxide nanoparticles in endothelial microparticles (EMPs), thereby enabling their noninvasive monitoring with magnetic resonance (MR) imaging in mice. MATERIALS AND METHODS Experiments were approved by the French Ministry of Agriculture. Endothelial cells, first labeled with anionic superparamagnetic nanoparticles, were stimulated to generate EMPs, carrying the nanoparticles in their inner compartment. C57BL/6 mice received an intravenous injection of nanoparticle-loaded EMPs, free nanoparticles, or the supernatant of nanoparticle-loaded EMPs. A 1-week follow-up was performed with a 4.7-T MR imaging device by using a gradient-echo sequence for imaging spleen, liver, and kidney and a radial very-short-echo time sequence for lung imaging. Comparisons were performed by using the Student t test. RESULTS The signal intensity loss induced by nanoparticle-loaded EMPs or free nanoparticles was readily detected within 5 minutes after injection in the liver and spleen, with a more pronounced effect in the spleen for the magnetic EMPs. The kinetics of signal intensity attenuation differed for nanoparticle-loaded EMPs and free nanoparticles. No signal intensity changes were observed in mice injected with the supernatant of nanoparticle-loaded EMPs, confirming that cells had not released free nanoparticles, but only in association with EMPs. The results were confirmed by using Perls staining and immunofluorescence analysis. CONCLUSION The strategy to generate EMPs with magnetic properties allowed noninvasive MR imaging assessment and follow-up of EMPs and opens perspectives for imaging the implications of these cellular vectors in diseases.


Stem Cells | 2014

HIF‐Prolyl Hydroxylase 2 Inhibition Enhances the Efficiency of Mesenchymal Stem Cell‐Based Therapies for the Treatment of Critical Limb Ischemia

Kiave-Yune Howangyin; Céline Loinard; Wineke Bakker; Coralie L. Guerin; José Vilar; Clément D'Audigier; Laetitia Mauge; Patrick Bruneval; Joseph Emmerich; Bernard I. Levy; Jacques Pouysségur; D. Smadja; Jean-Sébastien Silvestre

Upregulation of hypoxia‐inducible transcription factor‐1α (HIF‐1α), through prolyl‐hydroxylase domain protein (PHD) inhibition, can be thought of as a master switch that coordinates the expression of a wide repertoire of genes involved in regulating vascular growth and remodeling. We aimed to unravel the effect of specific PHD2 isoform silencing in cell‐based strategies designed to promote therapeutic revascularization in patients with critical limb ischemia (CLI). PHD2 mRNA levels were upregulated whereas that of HIF‐1α were downregulated in blood cells from patients with CLI. We therefore assessed the putative beneficial effects of PHD2 silencing on human bone marrow‐derived mesenchymal stem cells (hBM‐MSC)‐based therapy. PHD2 silencing enhanced hBM‐MSC therapeutic effect in an experimental model of CLI in Nude mice, through an upregulation of HIF‐1α and its target gene, VEGF‐A. In addition, PHD2‐transfected hBM‐MSC displayed higher protection against apoptosis in vitro and increased rate of survival in the ischemic tissue, as assessed by Fluorescence Molecular Tomography. Cotransfection with HIF‐1α or VEGF‐A short interfering RNAs fully abrogated the beneficial effect of PHD2 silencing on the proangiogenic capacity of hBM‐MSC. We finally investigated the effect of PHD2 inhibition on the revascularization potential of ischemic targeted tissues in the diabetic pathological context. Inhibition of PHD‐2 with shRNAs increased postischemic neovascularization in diabetic mice with CLI. This increase was associated with an upregulation of proangiogenic and proarteriogenic factors and was blunted by concomitant silencing of HIF‐1α. In conclusion, silencing of PHD2, by the transient upregulation of HIF‐1α and its target gene VEGF‐A, might improve the efficiency of hBM‐MSC‐based therapies. Stem Cells 2014;32:231–243

Collaboration


Dive into the Coralie L. Guerin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ziad Mallat

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar

David Smadja

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar

Patrick Bruneval

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar

Alice Récalde

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. Israel-Biet

Paris Descartes University

View shared research outputs
Researchain Logo
Decentralizing Knowledge