Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Corban G. Rivera is active.

Publication


Featured researches published by Corban G. Rivera.


Current Pharmaceutical Biotechnology | 2011

Anti-angiogenic peptides for cancer therapeutics

Elena V. Rosca; Jacob E. Koskimaki; Corban G. Rivera; Niranjan B. Pandey; Amir P. Tamiz; Aleksander S. Popel

Peptides have emerged as important therapeutics that are being rigorously tested in angiogenesis-dependent diseases due to their low toxicity and high specificity. Since the discovery of endogenous proteins and protein fragments that inhibit microvessel formation (thrombospondin, endostatin) several peptides have shown promise in pre-clinical and clinical studies for cancer. Peptides have been derived from thrombospondin, collagens, chemokines, coagulation cascade proteins, growth factors, and other classes of proteins and target different receptors. Here we survey recent developments for anti-angiogenic peptides with length not exceeding 50 amino acid residues that have shown activity in pre-clinical models of cancer or have been tested in clinical trials; some of the peptides have been modified and optimized, e.g., through L-to-D and non-natural amino acid substitutions. We highlight technological advances in peptide discovery and optimization including computational and bioinformatics tools and novel experimental techniques.


PLOS ONE | 2010

The Human-Bacterial Pathogen Protein Interaction Networks of Bacillus anthracis, Francisella tularensis, and Yersinia pestis

Matthew D. Dyer; Chris Neff; Max Dufford; Corban G. Rivera; Donna Shattuck; Josep Bassaganya-Riera; T. M. Murali; Bruno W. S. Sobral

Background Bacillus anthracis, Francisella tularensis, and Yersinia pestis are bacterial pathogens that can cause anthrax, lethal acute pneumonic disease, and bubonic plague, respectively, and are listed as NIAID Category A priority pathogens for possible use as biological weapons. However, the interactions between human proteins and proteins in these bacteria remain poorly characterized leading to an incomplete understanding of their pathogenesis and mechanisms of immune evasion. Methodology In this study, we used a high-throughput yeast two-hybrid assay to identify physical interactions between human proteins and proteins from each of these three pathogens. From more than 250,000 screens performed, we identified 3,073 human-B. anthracis, 1,383 human-F. tularensis, and 4,059 human-Y. pestis protein-protein interactions including interactions involving 304 B. anthracis, 52 F. tularensis, and 330 Y. pestis proteins that are uncharacterized. Computational analysis revealed that pathogen proteins preferentially interact with human proteins that are hubs and bottlenecks in the human PPI network. In addition, we computed modules of human-pathogen PPIs that are conserved amongst the three networks. Functionally, such conserved modules reveal commonalities between how the different pathogens interact with crucial host pathways involved in inflammation and immunity. Significance These data constitute the first extensive protein interaction networks constructed for bacterial pathogens and their human hosts. This study provides novel insights into host-pathogen interactions.


BMC Bioinformatics | 2010

NeMo: Network Module identification in Cytoscape

Corban G. Rivera; Rachit Vakil; Joel S. Bader

BackgroundAs the size of the known human interactome grows, biologists increasingly rely on computational tools to identify patterns that represent protein complexes and pathways. Previous studies have shown that densely connected network components frequently correspond to community structure and functionally related modules. In this work, we present a novel method to identify densely connected and bipartite network modules based on a log odds score for shared neighbours.ResultsTo evaluate the performance of our method (NeMo), we compare it to other widely used tools for community detection including kMetis, MCODE, and spectral clustering. We test these methods on a collection of synthetically constructed networks and the set of MIPS human complexes. We apply our method to the CXC chemokine pathway and find a high scoring functional module of 12 disconnected phospholipase isoforms.ConclusionWe present a novel method that combines a unique neighbour-sharing score with hierarchical agglomerative clustering to identify diverse network communities. The approach is unique in that we identify both dense network and dense bipartite network structures in a single approach. Our results suggest that the performance of NeMo is better than or competitive with leading approaches on both real and synthetic datasets. We minimize model complexity and generalization error in the Bayesian spirit by integrating out nuisance parameters. An implementation of our method is freely available for download as a plugin to Cytoscape through our website and through Cytoscape itself.


Nucleic Acids Research | 2006

VIRGO: computational prediction of gene functions.

Naveed Massjouni; Corban G. Rivera; T. M. Murali

Dramatic advances in sequencing technology and sophisticated experimental assays that interrogate the cell, combined with the public availability of the resulting data, herald the era of systems biology. However, the biological functions of more than 40% of the genes in sequenced genomes are unknown, posing a fundamental barrier to progress in systems biology. The large scale and diversity of available data requires the development of techniques that can automatically utilize these datasets to make quantified and robust predictions of gene function that can be experimentally verified. We present a service called the VIRtual Gene Ontology (VIRGO) that (i) constructs a functional linkage network (FLN) from gene expression and molecular interaction data, (ii) labels genes in the FLN with their functional annotations in the Gene Ontology and (iii) systematically propagates these labels across the FLN in order to precisely predict the functions of unlabelled genes. VIRGO assigns confidence estimates to predicted functions so that a biologist can prioritize predictions for further experimental study. For each prediction, VIRGO also provides an informative ‘propagation diagram’ that traces the flow of information in the FLN that led to the prediction. VIRGO is available at .


Annals of Biomedical Engineering | 2011

Angiogenesis-Associated Crosstalk Between Collagens, CXC Chemokines, and Thrombospondin Domain-Containing Proteins

Corban G. Rivera; Joel S. Bader; Aleksander S. Popel

Excessive vascularization is a hallmark of many diseases including cancer, rheumatoid arthritis, diabetic nephropathy, pathologic obesity, age-related macular degeneration, and asthma. Compounds that inhibit angiogenesis represent potential therapeutics for many diseases. Karagiannis and Popel [Proc. Natl. Acad. Sci. USA 105(37):13775–13780, 2008] used a bioinformatics approach to identify more than 100 peptides with sequence homology to known angiogenesis inhibitors. The peptides could be grouped into families by the conserved domain of the proteins they were derived from. The families included type IV collagen fibrils, CXC chemokine ligands, and type I thrombospondin domain-containing proteins. The relationships between these families have received relatively little attention. To investigate these relationships, we approached the problem by placing the families of proteins in the context of the human interactome including >120,000 physical interactions among proteins, genes, and transcripts. We built on a graph theoretic approach to identify proteins that may represent conduits of crosstalk between protein families. We validated these findings by statistical analysis and analysis of a time series gene expression data set taken during angiogenesis. We identified six proteins at the center of the angiogenesis-associated network including three syndecans, MMP9, CD44, and versican. These findings shed light on the complex signaling networks that govern angiogenesis phenomena.


PLOS ONE | 2011

Analysis of VEGF-A Regulated Gene Expression in Endothelial Cells to Identify Genes Linked to Angiogenesis

Corban G. Rivera; Sofie Mellberg; Lena Claesson-Welsh; Joel S. Bader; Aleksander S. Popel

Angiogenesis is important for many physiological processes, diseases, and also regenerative medicine. Therapies that inhibit the vascular endothelial growth factor (VEGF) pathway have been used in the clinic for cancer and macular degeneration. In cancer applications, these treatments suffer from a “tumor escape phenomenon” where alternative pathways are upregulated and angiogenesis continues. The redundancy of angiogenesis regulation indicates the need for additional studies and new drug targets. We aimed to (i) identify novel and missing angiogenesis annotations and (ii) verify their significance to angiogenesis. To achieve these goals, we integrated the human interactome with known angiogenesis-annotated proteins to identify a set of 202 angiogenesis-associated proteins. Across endothelial cell lines, we found that a significant fraction of these proteins had highly perturbed gene expression during angiogenesis. After treatment with VEGF-A, we found increasing expression of HIF-1α, APP, HIV-1 tat interactive protein 2, and MEF2C, while endoglin, liprin β1 and HIF-2α had decreasing expression across three endothelial cell lines. The analysis showed differential regulation of HIF-1α and HIF-2α. The data also provided additional evidence for the role of endothelial cells in Alzheimers disease.


Angiogenesis | 2013

Synergy between a collagen IV mimetic peptide and a somatotropin-domain derived peptide as angiogenesis and lymphangiogenesis inhibitors

Jacob E. Koskimaki; Esak Lee; William Chen; Corban G. Rivera; Elena V. Rosca; Niranjan B. Pandey; Aleksander S. Popel

Angiogenesis is central to many physiological and pathological processes. Here we show two potent bioinformatically-identified peptides, one derived from collagen IV and translationally optimized, and one from a somatotropin domain-containing protein, synergize in angiogenesis and lymphangiogenesis assays including cell adhesion, migration and in vivo Matrigel plugs. Peptide-peptide combination therapies have recently been applied to diseases such as human immunodeficiency virus (HIV), but remain uncommon thus far in cancer, age-related macular degeneration and other angiogenesis-dependent diseases. Previous work from our group has shown that the collagen IV-derived peptide primarily binds β1 integrins, while the receptor for the somatotropin-derived peptide remains unknown. We investigate these peptides’ mechanisms of action and find both peptides affect the vascular endothelial growth factor (VEGF) pathway as well as focal adhesion kinase (FAK) by changes in phosphorylation level and total protein content. Blocking of FAK both through binding of β1 integrins and through inhibition of VEGFR2 accounts for the synergy we observe. Since resistance through activation of multiple signaling pathways is a central problem of anti-angiogenic therapies in diseases such as cancer, we suggest that peptide combinations such as these are an approach that should be considered as a means to sustain anti-angiogenic and anti-lymphangiogenic therapy and improve efficacy of treatment.


Physiological Genomics | 2012

Constructing the angiome: a global angiogenesis protein interaction network

Liang Hui Chu; Corban G. Rivera; Aleksander S. Popel; Joel S. Bader

Angiogenesis is the formation of new blood vessels from pre-existing microvessels. Excessive and insufficient angiogenesis have been associated with many diseases including cancer, age-related macular degeneration, ischemic heart, brain, and skeletal muscle diseases. A comprehensive understanding of angiogenesis regulatory processes is needed to improve treatment of these diseases. To identify proteins related to angiogenesis, we developed a novel integrative framework for diverse sources of high-throughput data. The system, called GeneHits, was used to expand on known angiogenesis pathways to construct the angiome, a protein-protein interaction network for angiogenesis. The network consists of 478 proteins and 1,488 interactions. The network was validated through cross validation and analysis of five gene expression datasets from in vitro angiogenesis assays. We calculated the topological properties of the angiome. We analyzed the functional enrichment of angiogenesis-annotated and associated proteins. We also constructed an extended angiome with 1,233 proteins and 5,726 interactions to derive a more complete map of protein-protein interactions in angiogenesis. Finally, the extended angiome was used to identify growth factor signaling networks that drive angiogenesis and antiangiogenic signaling networks. The results of this analysis can be used to identify genes and proteins in different disease conditions and putative targets for therapeutic interventions as high-ranked candidates for experimental validation.


Journal of Medicinal Chemistry | 2011

Novel peptide-specific quantitative structure-activity relationship (QSAR) analysis applied to collagen IV peptides with antiangiogenic activity

Corban G. Rivera; Elena V. Rosca; Niranjan B. Pandey; Jacob E. Koskimaki; Joel S. Bader; Aleksander S. Popel

Angiogenesis is the growth of new blood vessels from existing vasculature. Excessive vascularization is associated with a number of diseases including cancer. Antiangiogenic therapies have the potential to stunt cancer progression. Peptides derived from type IV collagen are potent inhibitors of angiogenesis. We wanted to gain a better understanding of collagen IV structure-activity relationships using a ligand-based approach. We developed novel peptide-specific QSAR models to study the activity of the peptides in endothelial cell proliferation, migration, and adhesion inhibition assays. We found that the models produced quantitatively accurate predictions of activity and provided insight into collagen IV derived peptide structure-activity relationships.


Journal of Computational Biology | 2008

Network legos: building blocks of cellular wiring diagrams.

T. M. Murali; Corban G. Rivera

Publicly available datasets provide detailed and large-scale information on multiple types of molecular interaction networks in a number of model organisms. The wiring diagrams composed of these interaction networks capture a static view of cellular state. An important challenge in systems biology is obtaining a dynamic perspective on these networks by integrating them with gene expression measurements taken under multiple conditions. We present a top-down computational approach to identify building blocks of molecular interaction networks by: (i) integrating gene expression measurements for a particular disease state (e.g., leukemia) or experimental condition (e.g., treatment with growth serum) with molecular interactions to reveal an active network, which is the network of interactions active in the cell in that disease state or condition; and (ii) systematically combining active networks computed for different experimental conditions using set-theoretic formulae to reveal network legos, which are modules of coherently interacting genes and gene products in the wiring diagram. We propose efficient methods to compute active networks, systematically mine candidate legos, assess the statistical significance of these candidates, arrange them in a directed acyclic graph (DAG), and exploit the structure of the DAG to identify true network legos. We describe methods to assess the stability of our computations to changes in the input and to recover active networks by composing network legos. We analyze two human datasets using our method. A comparison of three leukemias demonstrates how a biologist can use our system to identify specific differences between these diseases. A larger-scale analysis of 13 distinct stresses illustrates our ability to compute the building blocks of the interaction networks activated in response to these stresses. Source code implementing our algorithms is available under version 2 of the GNU General Public License at http://bioinformatics.cs.vt.edu/ murali/software/network-lego.

Collaboration


Dive into the Corban G. Rivera's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joel S. Bader

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Elena V. Rosca

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amir P. Tamiz

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Esak Lee

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Liang Hui Chu

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

William Chen

Johns Hopkins University

View shared research outputs
Researchain Logo
Decentralizing Knowledge