Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cord L. Arnold is active.

Publication


Featured researches published by Cord L. Arnold.


Optics Express | 2012

Simultaneous compression and characterization of ultrashort laser pulses using chirped mirrors and glass wedges

Miguel Miranda; Thomas Fordell; Cord L. Arnold; Anne L'Huillier; Helder Crespo

We present a simple and robust technique to retrieve the phase of ultrashort laser pulses, based on a chirped mirror and glass wedges compressor. It uses the compression system itself as a diagnostic tool, thereby making unnecessary the use of complementary diagnostic tools. We used this technique to compress and characterize 7.1 fs laser pulses from an ultrafast laser oscillator.


Optics Express | 2012

Characterization of broadband few-cycle laser pulses with the d-scan technique

Miguel Miranda; Cord L. Arnold; Thomas Fordell; Francisco Silva; Benjamín Alonso; Rosa Weigand; Anne L'Huillier; Helder Crespo

We present an analysis and demonstration of few-cycle ultrashort laser pulse characterization using second-harmonic dispersion scans and numerical phase retrieval algorithms. The sensitivity and robustness of this technique with respect to noise, measurement bandwidth and complexity of the measured pulses is discussed through numerical examples and experimental results. Using this technique, we successfully demonstrate the characterization of few-cycle pulses with complex and structured spectra generated from a broadband ultrafast laser oscillator and a high-energy hollow fiber compressor.


Optics Express | 2010

Filamentation without intensity clamping.

P. Prem Kiran; Suman Bagchi; Cord L. Arnold; Siva Rama Krishnan; G. Ravindra Kumar; Arnaud Couairon

We present measurements of the supercontinuum emission (SCE) from ultrashort Ti:Saph laser pulse filamentation in air in a tightly focused geometry. The spectral broadening of SCE indicates that peak intensities exceed the clamping value of a few 10(13) W/cm(2) obtained for filamentation in a loose focusing geometry by at least one order of magnitude. We provide an interpretation for this regime of filamenation without intensity clamping.


Journal of Optics | 2010

Ultrashort pulse laser surgery of the cornea and the sclera

Karsten Plamann; Florent Aptel; Cord L. Arnold; Antoine Courjaud; Caroline Crotti; F. Deloison; Frédéric Druon; Patrick Georges; Marc Hanna; Jean-Marc Legeais; Franck Morin; Eric Mottay; Valeria Nuzzo; Donald A. Peyrot; Michèle Savoldelli

The strongly localized interaction process of ultrashort laser pulses with tissue makes femtosecond lasers a powerful tool for eye surgery. These lasers are now routinely used in refractive surgery and other forms of surgery of the anterior segment of the eye. Several clinical laser systems also offer options for corneal grafting and the potential use of ultrashort pulse lasers in glaucoma surgery has been the object of several recent studies which have shown promising results. While devices aimed for interventions in clear tissue may be based on available solid state or fibre laser technology, the development of tools for surgery in more strongly scattering tissue has to account for the compromised tissular transparency and requires the development of optimized laser sources. The present paper focuses on surgery of clear and pathological cornea as well as sclera. It aims to give an overview over typical medical indications for ultrashort pulse laser surgery, the optics of the tissues involved, the available laser technology, the laser–tissue interaction process, and possible future developments.


Scientific Reports | 2013

Efficient high-order harmonic generation boosted by below-threshold harmonics.

Fernando Brizuela; Christoph Heyl; Piotr Rudawski; David Kroon; Linnea Rading; Jan Marcus Dahlström; Johan Mauritsson; Per Johnsson; Cord L. Arnold; Anne L'Huillier

High-order harmonic generation (HHG) in gases has been established as an important technique for the generation of coherent extreme ultraviolet (XUV) pulses at ultrashort time scales. Its main drawback, however, is the low conversion efficiency, setting limits for many applications, such as ultrafast coherent imaging, nonlinear processes in the XUV range, or seeded free electron lasers. Here we introduce a novel scheme based on using below-threshold harmonics, generated in a “seeding cell”, to boost the HHG process in a “generation cell”, placed further downstream in the focused laser beam. By modifying the fundamental driving field, these low-order harmonics alter the ionization step of the nonlinear HHG process. Our dual-cell scheme enhances the conversion efficiency of HHG, opening the path for the realization of robust intense attosecond XUV sources.


arXiv: Optics | 2016

Scale-invariant nonlinear optics in gases

Christoph Heyl; Helene Coudert-Alteirac; Miguel Miranda; Maite Louisy; Katalin Kovács; V. Tosa; Emeric Balogh; Katalin Varjú; Anne L'Huillier; Arnaud Couairon; Cord L. Arnold

Nonlinear optical methods have become ubiquitous in many scientific areas, from fundamental studies of time-resolved electron dynamics to microscopy and spectroscopy applications. They are, however, often limited to a certain range of parameters such as pulse energy and average power. Restrictions arise from, for example, the required field intensity as well as from parasitic nonlinear effects and saturation mechanisms. Here, we identify a fundamental principle of nonlinear light–matter interaction in gases and show that paraxial nonlinear wave equations are scale-invariant if spatial dimensions, gas density, and laser pulse energy are scaled appropriately. As an example, we apply this principle to high-order harmonic generation and provide a general method for increasing peak and average power of attosecond sources. In addition, we experimentally demonstrate the implications for the compression of short laser pulses. Our scaling principle extends well beyond those examples and includes many nonlinear processes with applications in different areas of science.


Nature Communications | 2016

Spectral phase measurement of a Fano resonance using tunable attosecond pulses.

Marija Kotur; Diego Guenot; Álvaro Jiménez-Galán; David Kroon; Esben Witting Larsen; Maite Louisy; Samuel Bengtsson; Miguel Miranda; Johan Mauritsson; Cord L. Arnold; Sophie E. Canton; Mathieu Gisselbrecht; Thomas Carette; Jan Marcus Dahlström; Eva Lindroth; Alfred Maquet; Luca Argenti; Fernando Martín; Anne L'Huillier

Electron dynamics induced by resonant absorption of light is of fundamental importance in nature and has been the subject of countless studies in many scientific areas. Above the ionization threshold of atomic or molecular systems, the presence of discrete states leads to autoionization, which is an interference between two quantum paths: direct ionization and excitation of the discrete state coupled to the continuum. Traditionally studied with synchrotron radiation, the probability for autoionization exhibits a universal Fano intensity profile as a function of excitation energy. However, without additional phase information, the full temporal dynamics cannot be recovered. Here we use tunable attosecond pulses combined with weak infrared radiation in an interferometric setup to measure not only the intensity but also the phase variation of the photoionization amplitude across an autoionization resonance in argon. The phase variation can be used as a fingerprint of the interactions between the discrete state and the ionization continua, indicating a new route towards monitoring electron correlations in time.


Optica; 2(6), pp 563-566 (2015) | 2015

Gating attosecond pulses in a noncollinear geometry

Maite Louisy; Cord L. Arnold; Miguel Miranda; Esben Witting Larsen; Samuel Bengtsson; David Kroon; Marija Kotur; Diego Guenot; Linnea Rading; Piotr Rudawski; Fernando Brizuela; Filippo Campi; Byunghoon Kim; Aurélien Houard; Johan Mauritsson; Per Johnsson; Anne L'Huillier; Christoph Heyl

The efficient generation of isolated attosecond pulses (IAPs), giving access to ultrafast electron dynamics in various systems, is a key challenge in attosecond science. IAPs can be produced by confining the extreme ultraviolet emission generated by an intense laser pulse to a single field half-cycle or, as shown recently, by employing angular streaking methods. Here, we experimentally demonstrate the angular streaking of attosecond pulse trains in a noncollinear geometry, leading to the emission of angularly separated IAPs. The noncollinear geometry simplifies the separation of the fundamental laser field and the generated pulses, making this scheme promising for intracavity attosecond pulse generation, thus opening new possibilities for high-repetition-rate attosecond sources.


Journal of Physics B | 2014

Measurements of relative photoemission time delays in noble gas atoms

Diego Guenot; David Kroon; Emeric Balogh; Esben Witting Larsen; Marija Kotur; Miguel Miranda; Thomas Fordell; Per Johnsson; Johan Mauritsson; Mathieu Gisselbrecht; Katalin Varjú; Cord L. Arnold; Thomas Carette; Anatoli Kheifets; Eva Lindroth; Anne L'Huillier; Jan Marcus Dahlström

We determine relative photoemission time delays between valence electrons in different noble gas atoms (Ar, Ne and He) in an energy range between 31 and 37 eV. The atoms are ionized by an attosecond pulse train synchronized with an infrared laser field and the delays are measured using an interferometric technique. We compare our results with calculations using the random phase approximation with exchange and multi-configurational Hartree-Fock. We also investigate the influence of the different ionization angular channels.


Optics Letters | 2009

High-energy ultrashort laser pulse compression in hollow planar waveguides.

Selcuk Akturk; Cord L. Arnold; Bing Zhou; A. Mysyrowicz

We demonstrate compression of high-energy ultrashort laser pulses by nonlinear propagation inside gas-filled planar hollow waveguides. We adjust the input beam size along the nonguided dimension of the planar waveguide to restrain the intensity below photoionization, while the relatively long range guided propagation yields significant self-phase modulation and spectral broadening. We compare the compression in different noble gases and obtain 13.6 fs duration with output pulse energy of 8.1 mJ in argon and 11.5 fs duration with 7.6 mJ energy in krypton. The broadened spectra at the output of the waveguide are uniform over more than 70% of the total pulse energy. Shorter duration could be obtained at the expense of the introduction of spatial structure in the beam (and eventual formation of filaments) resulting from small-scale self-focusing in the nonguided direction.

Collaboration


Dive into the Cord L. Arnold's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge