Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cordula Gruettner is active.

Publication


Featured researches published by Cordula Gruettner.


Clinical Cancer Research | 2005

Development of Tumor Targeting Bioprobes (111In-Chimeric L6 Monoclonal Antibody Nanoparticles) for Alternating Magnetic Field Cancer Therapy

Sally J. DeNardo; Gerald L. DeNardo; Laird Miers; Arutselvan Natarajan; Alan R. Foreman; Cordula Gruettner; Grete N. Adamson; Robert Ivkov

Objectives:111In-chimeric L6 (ChL6) monoclonal antibody (mAb)–linked iron oxide nanoparticle (bioprobes) pharmacokinetics, tumor uptake, and the therapeutic effect of inductively heating these bioprobes by externally applied alternating magnetic field (AMF) were studied in athymic mice bearing human breast cancer HBT 3477 xenografts. Tumor cell radioimmunotargeting of the bioprobes and therapeutic and toxic responses were determined. Methods: Using 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide HCl, 111In-7,10-tetra-azacyclododecane-N, N′,N″,N‴-tetraacetic acid-ChL6 was conjugated to the carboxylated polyethylene glycol on dextran-coated iron oxide 20 nm particles, one to two mAbs per nanoparticle. After magnetic purification and sterile filtration, pharmacokinetics, histopathology, and AMF/bioprobe therapy were done using 111In-ChL6 bioprobe doses (20 ng/2.2 mg ChL6/ bioprobe), i.v. with 50 μg ChL6 in athymic mice bearing HBT 3477; a 153 kHz AMF was given 72 hours postinjection for therapy with amplitudes of 1,300, 1,000, or 700 Oe. Weights, blood counts, and tumor size were monitored and compared with control mice receiving nothing, or AMF or bioprobes alone. Results:111In-ChL6 bioprobe binding in vitro to HBT 3477 cells was 50% to 70% of that of 111In-ChL6. At 48 hours, tumor, lung, kidney, and marrow uptakes of the 111In-ChL6 bioprobes were not different from that observed in prior studies of 111In-ChL6. Significant therapeutic responses from AMF/bioprobe therapy were shown with up to eight times longer mean time to quintuple tumor volume with therapy compared with no treatment (P = 0.0013). Toxicity was only seen in the 1,300 Oe AMF cohort, with 4 of 12 immediate deaths and skin erythema. Electron micrographs showed bioprobes on the surfaces of the HBT 3477 cells of excised tumors and tumor necrosis 24 hours after AMF/bioprobe therapy. Conclusion: This study shows that mAb-conjugated nanoparticles (bioprobes), when given i.v., escape into the extravascular space and bind to cancer cell membrane antigen, so that bioprobes can be used in concert with externally applied AMF to deliver thermoablative cancer therapy.


Bioconjugate Chemistry | 2008

NanoFerrite Particle Based Radioimmunonanoparticles : Binding Affinity and In Vivo Pharmacokinetics

Arutselvan Natarajan; Cordula Gruettner; Robert Ivkov; Gerald L. DeNardo; Gary R. Mirick; Aina Yuan; Allan Foreman; Sally J. DeNardo

Dextran and PEG-coated iron oxide nanoparticles (NP), when suitably modified to enable conjugation with molecular targeting agents, provide opportunities to target cancer cells. Monoclonal antibodies, scFv, and peptides conjugated to 20 nm NP have been reported to target cancer for imaging and alternating magnetic field (AMF) therapy. The physical characteristics of NPs can affect their in vivo performance. Surface morphology, surface charge density, and particle size are considered important factors that determine pharmacokinetics, toxicity, and biodistribution. New NanoFerrite (NF) particles having improved specific AMF absorption rates and diameters of 30 and 100 nm were studied to evaluate the variation in their in vitro and in vivo characteristics in comparison to the previously studied 20 nm superparamagnetic iron oxide (SPIO) NP. SPIO NP 20 nm and NF NP 30 and 100 nm were conjugated to (111)In-DOTA-ChL6, a radioimmunoconjugate. Radioimmunoconjugates were conjugated to NPs using 25 microg of RIC/mg of NP by carbodiimide chemistry. The radioimmunonanoparticles (RINP) were purified and characterized by PAGE, cellulose acetate electrophoresis (CAE), live cell binding assays, and pharmacokinetics in athymic mice bearing human breast cancer (HBT 3477) xenografts. RINP (2.2 mg) were injected iv and whole body; blood and tissue data were collected at 4, 24, and 48 h. The preparations used for animal study were >90% monomeric by PAGE and CAE. The immunoreactivity of the RINP was 40-60% compared to (111)In-ChL6. Specific activities of the doses were 20-25 microCi/2.2 mg and 6-11 microg of mAb/2.2 mg of NP. Mean tumor uptakes (% ID/g +/- SD) of each SPIO 20 nm, NF 30 nm, and 100 nm RINP at 48 h were 9.00 +/- 0.8 (20 nm), 3.0 +/- 0.3 (30 nm), and 4.5 +/- 0.8 (100 nm), respectively; the ranges of tissue uptakes were liver (16-32 +/- 1-8), kidney (7.0-15 +/- 1), spleen (8-17 +/- 3-8), lymph nodes 5-6 +/- 1-2), and lung (2.0-4 +/- 0.1-2). In conclusion, this study demonstrated that 100 nm NF NP could be conjugated to (111)In-mAb so that the resulting RINP had characteristics suitable for AMF therapy. Although 100 nm RINP targeted tumor less than 20 nm SPIO RINP, their heating capacity is typically 6 times greater, suggesting the 100 nm NF RINP could still deliver better therapy with AMF.


Cancer Biotherapy and Radiopharmaceuticals | 2008

Development of Multivalent Radioimmunonanoparticles for Cancer Imaging and Therapy

Arutselvan Natarajan; Cheng-Yi Xiong; Cordula Gruettner; Gerald L. DeNardo; Sally J. DeNardo

BACKGROUND Noninvasive, focused hyperthermia can be achieved by using an externally applied alternating magnetic field (AMF) if effective concentrations of nanoparticles can be delivered to the target cancer cells. Targeting agents, for example, monoclonal antibodies or peptides, linked to magnetic iron oxide nanoparticles (NP), represent a promising strategy to target cancer cells and hyperthermia. METHODS We have developed a new radioconjugate NP ((111)In-DOTA-di-scFv-NP), using recombinantly generated antibody fragments, di-scFv-c, for the imaging and therapy of anti-MUC-1-expressing cancers, because aberrant MUC-1 is abundantly expressed on the majority of human epithelial cancers. Anti-MUC-1 di-scFv-c (50 kDa) were engineered, generated, and selected to link maleimide functionalized nanoparticles (NP-M). DOTA chelate was conjugated with di-scFv-c for radionuclide chelation to trace the radioimmunonanoparticles (RINPs) in vivo. RESULTS Heat-inducing NP-M were prepared with maleimide density >15 per particle for site-specific thiolation. The specific activity of the RINP was 4-5 microCi (111)In/mg with >10 molecules of di-scFv per NP. We characterized the RINP by polyacrylamide gel electrophoresis, cellulose acetate electrophoresis, size-exclusion chromatography, and tumor-cell binding. RINP had a >90% di-scFv conjugated to NP and an immunoreactivity >80% relative to unmodified di-scFv-c on HBT 3477 and DU145 tumor cells. Pharmacokinetics and whole-body autoradiography studies demonstrated that a 5% injected dose was targeted in tumor after 24 hours. CONCLUSIONS Further development of this new preparation of RINP may provide uniquely high tumor-targeting NP for AMF-driven tumor hyperthermia with less spleen and kidney accumulation.


Nanomedicine: Nanotechnology, Biology and Medicine | 2012

Preliminary study of injury from heating systemically delivered, nontargeted dextran- superparamagnetic iron oxide nanoparticles in mice

Carmen Kut; Yonggang Zhang; Mohammad Hedayati; Haoming Zhou; Christine Cornejo; David E. Bordelon; Jana Mihalic; Michele Wabler; Elizabeth Burghardt; Cordula Gruettner; Alison S. Geyh; Cory Brayton; Theodore L. DeWeese; Robert Ivkov

AIM To assess the potential for injury to normal tissues in mice due to heating systemically delivered magnetic nanoparticles in an alternating magnetic field (AMF). MATERIALS & METHODS Twenty three male nude mice received intravenous injections of dextran-superparamagnetic iron oxide nanoparticles on days 1-3. On day 6, they were exposed to AMF. On day 7, blood, liver and spleen were harvested and analyzed. RESULTS Iron deposits were detected in the liver and spleen. Mice that had received a high-particle dose and a high AMF experienced increased mortality, elevated liver enzymes and significant liver and spleen necrosis. Mice treated with low-dose superparamagnetic iron oxide nanoparticles and a low AMF survived, but had elevated enzyme levels and local necrosis in the spleen. CONCLUSION Magnetic nanoparticles producing only modest heat output can cause damage, and even death, when sequestered in sufficient concentrations. Dextran-superparamagnetic iron oxide nanoparticles are deposited in the liver and spleen, making these the sites of potential toxicity. Original submitted 16 August 2011; Revised submitted 21 March 2012; Published online 26 July 2012.


Nanomedicine: Nanotechnology, Biology and Medicine | 2013

The effect of cell-cluster size on intracellular nanoparticle-mediated hyperthermia: is it possible to treat microscopic tumors?

Mohammad Hedayati; Owen C. Thomas; Budri Abubaker-Sharif; Haoming Zhou; Christine Cornejo; Yonggang Zhang; Michele Wabler; Jana Mihalic; Cordula Gruettner; Fritz Westphal; Alison S. Geyh; Theodore L. DeWeese; Robert Ivkov

AIM To compare the measured surface temperature of variable size ensembles of cells heated by intracellular magnetic fluid hyperthermia with heat diffusion model predictions. MATERIALS & METHODS Starch-coated Bionized NanoFerrite (Micromod Partikeltechnologie GmbH, Rostock, Germany) iron oxide magnetic nanoparticles were loaded into cultured DU145 prostate cancer cells. Cell pellets of variable size were treated with alternating magnetic fields. The surface temperature of the pellets was measured in situ and the associated cytotoxicity was determined by clonogenic survival assay. RESULTS & CONCLUSION For a given intracellular nanoparticle concentration, a critical minimum number of cells was required for cytotoxic hyperthermia. Above this threshold, cytotoxicity increased with increasing cell number. The measured surface temperatures were consistent with those predicted by a heat diffusion model that ignores intercellular thermal barriers. These results suggest a minimum tumor volume threshold of approximately 1 mm(3), below which nanoparticle-mediated heating is unlikely to be effective as the sole cytotoxic agent.


Cancer Biotherapy and Radiopharmaceuticals | 2008

Short communication: nanoparticle thermotherapy and external beam radiation therapy for human prostate cancer cells.

Joerg Lehmann; Arutselvan Natarajan; Gerald L. DeNardo; Robert Ivkov; Allan Foreman; Christopher Catapano; Gary R. Mirick; Tony Quang; Cordula Gruettner; Sally J. DeNardo

UNLABELLED Nanoparticle thermotherapy (NPTT) uses monoclonal antibody-linked iron oxide magnetic nanoparticles (bioprobes) for the tumor-specific thermotherapy of cancer by hysteretic heating of the magnetic component of the probes through an externally applied alternating magnetic field (AMF). The present study investigated the effect of NPTT on a human prostate cancer cell line, DU145. The concept of total heat dose (THD) as a measure for NPTT was validated on a cellular level and THD was correlated to cell death in vitro. The study, furthermore, explored the potential enhancement of the NPTT effect through added external beam radiation therapy (EBRT), because both forms of treatment have a different, and potentially complementary, mechanism of causing cell death. METHODS Using carbodiimide, (111)In-DOTA-ChL6 was conjugated to dextran iron oxide 20-nm particles with polyethylene glycol COOH groups on the surface and purified as (111)In-bioprobes. NPTT and EBRT were applied alone and combined to cells labeled with the bioprobes. Cell response was monitored by measuring lactate dehydrogenase (LDH), a product of cytolysis, in the medium. This distinct focus on the response to NPTT was possible, since we found in previous studies that the LDH assay was relatively insensitive to the response of cells (without bioprobes) to EBRT in the dose levels given here. RESULTS NPTT showed a significantly increased cell death at a total calculated heat dose of 14.51 and 29.02 J/g cells (50% and 100% AMF duty, 350 Oe, 136 kHz, 12 cycles, 20 minutes total), compared with AMF exposure in the absence of bioprobes. Adding EBRT to NPTT did not increase cell death, as measured by LDH. However, EBRT given to cells labeled with bioprobes caused significant cell death at radiation doses of 10 Gy and higher. CONCLUSIONS In human prostate cancer cell cultures, NPTT applied as a single modality caused cell death that correlated with THD estimation; complete cell death occurred at 14.51 J/g cells. Consequently, enhancement of the NPTT effect through the addition of EBRT could not be addressed. Interestingly, EBRT induced cell death on bioprobe-labeled cells at EBRT levels that did not show cell death in the absence of bioprobes; this phenomenon is worth investigating further.


International Journal of Hyperthermia | 2016

Image-guided thermal therapy with a dual-contrast magnetic nanoparticle formulation: A feasibility study

Anilchandra Attaluri; Madhav Seshadri; Sahar Mirpour; Michele Wabler; Thomas Marinho; Muhammad Furqan; Haoming Zhou; Silvia H. De Paoli; Cordula Gruettner; Wesley D. Gilson; Theodore L. DeWeese; Monica Garcia; Robert Ivkov; Eleni Liapi

Abstract Purpose/objective: The aim of this study was to develop and investigate the properties of a magnetic iron oxide nanoparticle–ethiodised oil formulation for image-guided thermal therapy of liver cancer. Materials and methods: The formulation comprises bionised nano-ferrite (BNF) nanoparticles suspended in ethiodised oil, emulsified with polysorbate 20 (BNF-lip). Nanoparticle size was measured via photon correlation spectroscopy and transmission electron microscopy. In vivo thermal therapy capability was tested in two groups of male Foxn1nu mice bearing subcutaneous HepG2 xenograft tumours. Group I (n = 12) was used to screen conditions for group II (n = 48). In group II, mice received one of BNF-lip (n = 18), BNF alone (n = 16), or PBS (n = 14), followed by alternating magnetic field (AMF) hyperthermia, with either varied duration (15 or 20 min) or amplitude (0, 16, 20, or 24 kA/m). Image-guided fluoroscopic intra-arterial injection of BNF-lip was tested in New Zealand white rabbits (n = 10), bearing liver VX2 tumours. The animals were subsequently imaged with CT and 3 T MRI, up to 7 days post-injection. The tumours were histopathologically evaluated for distribution of BNF-lip. Results: The BNF showed larger aggregate diameters when suspended in BNF-lip, compared to clear solution. The BNF-lip formulation produced maximum tumour temperatures with AMF >20 kA/m and showed positive X-ray visibility and substantial shortening of T1 and T2 relaxation time, with sustained intratumoural retention up to 7 days post-injection. On pathology, intratumoural BNF-lip distribution correlated well with CT imaging of intratumoural BNF-lip distribution. Conclusion: The BNF-lip formulation has favourable thermal and dual imaging capabilities for image-guided thermal therapy of liver cancer, suggesting further exploration for clinical applications.


International Journal of Hyperthermia | 2018

An optimised spectrophotometric assay for convenient and accurate quantitation of intracellular iron from iron oxide nanoparticles

Mohammad Hedayati; Bedri Abubaker-Sharif; Mohamed H. Khattab; Allen Razavi; Isa Mohammed; Arsalan Nejad; Michele Wabler; Haoming Zhou; Jana Mihalic; Cordula Gruettner; Theodore L. DeWeese; Robert Ivkov

Abstract We report the development and optimisation of an assay for quantitating iron from iron oxide nanoparticles in biological matrices by using ferene-s, a chromogenic compound. The method is accurate, reliable and can be performed with basic equipment common to many laboratories making it convenient and inexpensive. The assay we have developed is suited for quantitation of iron in cell culture studies with iron oxide nanoparticles, which tend to manifest low levels of iron. The assay was validated with standard reference materials and with inductively coupled plasma-mass spectrometry (ICP-MS) to accurately measure iron concentrations ∼1 × 10−6 g in about 1 × 106 cells (∼1 × 10−12 g Fe per cell). The assay requires preparation and use of a working solution to which samples can be directly added without further processing. After overnight incubation, the absorbance can be measured with a standard UV/Vis spectrophotometer to provide iron concentration. Alternatively, for expedited processing, samples can be digested with concentrated nitric acid before addition to the working solution. Optimization studies demonstrated significant deviations accompany variable digestion times, highlighting the importance to ensure complete iron ion liberation from the nanoparticle or sample matrix to avoid underestimating iron concentration. When performed correctly, this method yields reliable iron ion concentration measurements to ∼2 × 10−6 M (1 × 10−7 g/ml sample).


Scientific Reports | 2018

Physical characterization and in vivo organ distribution of coated iron oxide nanoparticles

Anirudh Sharma; Christine Cornejo; Jana Mihalic; Alison S. Geyh; David E. Bordelon; Preethi Korangath; Fritz Westphal; Cordula Gruettner; Robert Ivkov

Citrate-stabilized iron oxide magnetic nanoparticles (MNPs) were coated with one of carboxymethyl dextran (CM-dextran), polyethylene glycol-polyethylene imine (PEG-PEI), methoxy-PEG-phosphate+rutin, or dextran. They were characterized for size, zeta potential, hysteresis heating in an alternating magnetic field, dynamic magnetic susceptibility, and examined for their distribution in mouse organs following intravenous delivery. Except for PEG-PEI-coated nanoparticles, all coated nanoparticles had a negative zeta potential at physiological pH. Nanoparticle sizing by dynamic light scattering revealed an increased nanoparticle hydrodynamic diameter upon coating. Magnetic hysteresis heating changed little with coating; however, the larger particles demonstrated significant shifts of the peak of complex magnetic susceptibility to lower frequency. 48 hours following intravenous injection of nanoparticles, mice were sacrificed and tissues were collected to measure iron concentration. Iron deposition from nanoparticles possessing a negative surface potential was observed to have highest accumulation in livers and spleens. In contrast, iron deposition from positively charged PEG-PEI-coated nanoparticles was observed to have highest concentration in lungs. These preliminary results suggest a complex interplay between nanoparticle size and charge determines organ distribution of systemically-delivered iron oxide magnetic nanoparticles.


The Journal of Nuclear Medicine | 2007

Thermal Dosimetry Predictive of Efficacy of 111In-ChL6 Nanoparticle AMF–Induced Thermoablative Therapy for Human Breast Cancer in Mice

Sally J. DeNardo; Gerald L. DeNardo; Arutselvan Natarajan; Laird Miers; Allan Foreman; Cordula Gruettner; Grete N. Adamson; Robert Ivkov

Collaboration


Dive into the Cordula Gruettner's collaboration.

Top Co-Authors

Avatar

Robert Ivkov

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Allan Foreman

University of California

View shared research outputs
Top Co-Authors

Avatar

Haoming Zhou

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Jana Mihalic

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Michele Wabler

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert Ivkov

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge