Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Corey J. Keller is active.

Publication


Featured researches published by Corey J. Keller.


The Journal of Neuroscience | 2013

Neurophysiological investigation of spontaneous correlated and anticorrelated fluctuations of the BOLD signal.

Corey J. Keller; Stephan Bickel; Christopher J. Honey; David M. Groppe; László Entz; R. Cameron Craddock; Fred A. Lado; Clare Kelly; Michael P. Milham; Ashesh D. Mehta

Analyses of intrinsic fMRI BOLD signal fluctuations reliably reveal correlated and anticorrelated functional networks in the brain. Because the BOLD signal is an indirect measure of neuronal activity and anticorrelations can be introduced by preprocessing steps, such as global signal regression, the neurophysiological significance of correlated and anticorrelated BOLD fluctuations is a source of debate. Here, we address this question by examining the correspondence between the spatial organization of correlated BOLD fluctuations and correlated fluctuations in electrophysiological high γ power signals recorded directly from the cortical surface of 5 patients. We demonstrate that both positive and negative BOLD correlations have neurophysiological correlates reflected in fluctuations of spontaneous neuronal activity. Although applying global signal regression to BOLD signals results in some BOLD anticorrelations that are not apparent in the ECoG data, it enhances the neuronal-hemodynamic correspondence overall. Together, these findings provide support for the neurophysiological fidelity of BOLD correlations and anticorrelations.


NeuroImage | 2012

Individualized localization and cortical surface-based registration of intracranial electrodes

Andrew R. Dykstra; Alexander M. Chan; Brian T. Quinn; Rodrigo Zepeda; Corey J. Keller; Justine Cormier; Joseph R. Madsen; Emad N. Eskandar; Sydney S. Cash

In addition to its widespread clinical use, the intracranial electroencephalogram (iEEG) is increasingly being employed as a tool to map the neural correlates of normal cognitive function as well as for developing neuroprosthetics. Despite recent advances, and unlike other established brain-mapping modalities (e.g. functional MRI, magneto- and electroencephalography), registering the iEEG with respect to neuroanatomy in individuals-and coregistering functional results across subjects-remains a significant challenge. Here we describe a method which coregisters high-resolution preoperative MRI with postoperative computerized tomography (CT) for the purpose of individualized functional mapping of both normal and pathological (e.g., interictal discharges and seizures) brain activity. Our method accurately (within 3mm, on average) localizes electrodes with respect to an individuals neuroanatomy. Furthermore, we outline a principled procedure for either volumetric or surface-based group analyses. We demonstrate our method in five patients with medically-intractable epilepsy undergoing invasive monitoring of the seizure focus prior to its surgical removal. The straight-forward application of this procedure to all types of intracranial electrodes, robustness to deformations in both skull and brain, and the ability to compare electrode locations across groups of patients makes this procedure an important tool for basic scientists as well as clinicians.


Brain | 2010

Heterogeneous neuronal firing patterns during interictal epileptiform discharges in the human cortex

Corey J. Keller; Wilson Truccolo; John T. Gale; Emad N. Eskandar; Thomas Thesen; Chad Carlson; Orrin Devinsky; Ruben Kuzniecky; Werner K. Doyle; Joseph R. Madsen; Donald L. Schomer; Ashesh D. Mehta; Emery N. Brown; Leigh R. Hochberg; István Ulbert; Eric Halgren; Sydney S. Cash

Epileptic cortex is characterized by paroxysmal electrical discharges. Analysis of these interictal discharges typically manifests as spike-wave complexes on electroencephalography, and plays a critical role in diagnosing and treating epilepsy. Despite their fundamental importance, little is known about the neurophysiological mechanisms generating these events in human focal epilepsy. Using three different systems of microelectrodes, we recorded local field potentials and single-unit action potentials during interictal discharges in patients with medically intractable focal epilepsy undergoing diagnostic workup for localization of seizure foci. We studied 336 single units in 20 patients. Ten different cortical areas and the hippocampus, including regions both inside and outside the seizure focus, were sampled. In three of these patients, high density microelectrode arrays simultaneously recorded between 43 and 166 single units from a small (4 mm x 4 mm) patch of cortex. We examined how the firing rates of individual neurons changed during interictal discharges by determining whether the firing rate during the event was the same, above or below a median baseline firing rate estimated from interictal discharge-free periods (Kruskal-Wallis one-way analysis, P<0.05). Only 48% of the recorded units showed such a modulation in firing rate within 500 ms of the discharge. Units modulated during the discharge exhibited significantly higher baseline firing and bursting rates than unmodulated units. As expected, many units (27% of the modulated population) showed an increase in firing rate during the fast segment of the discharge (+ or - 35 ms from the peak of the discharge), while 50% showed a decrease during the slow wave. Notably, in direct contrast to predictions based on models of a pure paroxysmal depolarizing shift, 7.7% of modulated units recorded in or near the seizure focus showed a decrease in activity well ahead (0-300 ms) of the discharge onset, while 12.2% of units increased in activity in this period. No such pre-discharge changes were seen in regions well outside the seizure focus. In many recordings there was also a decrease in broadband field potential activity during this same pre-discharge period. The different patterns of interictal discharge-modulated firing were classified into more than 15 different categories. This heterogeneity in single unit activity was present within small cortical regions as well as inside and outside the seizure onset zone, suggesting that interictal epileptiform activity in patients with epilepsy is not a simple paroxysm of hypersynchronous excitatory activity, but rather represents an interplay of multiple distinct neuronal types within complex neuronal networks.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Intrinsic functional architecture predicts electrically evoked responses in the human brain

Corey J. Keller; Stephan Bickel; László Entz; István Ulbert; Michael P. Milham; Clare Kelly; Ashesh D. Mehta

Adaptive brain function is characterized by dynamic interactions within and between neuronal circuits, often occurring at the time scale of milliseconds. These complex interactions between adjacent and noncontiguous brain areas depend on a functional architecture that is maintained even in the absence of input. Functional MRI studies carried out during rest (R-fMRI) suggest that this architecture is represented in low-frequency (<0.1 Hz) spontaneous fluctuations in the blood oxygen level-dependent signal that are correlated within spatially distributed networks of brain areas. These networks, collectively referred to as the brains intrinsic functional architecture, exhibit a remarkable correspondence with patterns of task-evoked coactivation as well as maps of anatomical connectivity. Despite this striking correspondence, there is no direct evidence that this intrinsic architecture forms the scaffold that gives rise to faster processes relevant to information processing and seizure spread. Here, we demonstrate that the spatial distribution and magnitude of temporally correlated low-frequency fluctuations observed with R-fMRI during rest predict the pattern and magnitude of corticocortical evoked potentials elicited within 500 ms after single-pulse electrical stimulation of the cerebral cortex with intracranial electrodes. Across individuals, this relationship was found to be independent of the specific regions and functional systems probed. Our findings bridge the immense divide between the temporal resolutions of these distinct measures of brain function and provide strong support for the idea that the low-frequency signal fluctuations observed with R-fMRI maintain and update the intrinsic architecture underlying the brains repertoire of functional responses.


Philosophical Transactions of the Royal Society B | 2014

Mapping human brain networks with cortico-cortical evoked potentials.

Corey J. Keller; Christopher J. Honey; Pierre Mégevand; László Entz; István Ulbert; Ashesh D. Mehta

The cerebral cortex forms a sheet of neurons organized into a network of interconnected modules that is highly expanded in humans and presumably enables our most refined sensory and cognitive abilities. The links of this network form a fundamental aspect of its organization, and a great deal of research is focusing on understanding how information flows within and between different regions. However, an often-overlooked element of this connectivity regards a causal, hierarchical structure of regions, whereby certain nodes of the cortical network may exert greater influence over the others. While this is difficult to ascertain non-invasively, patients undergoing invasive electrode monitoring for epilepsy provide a unique window into this aspect of cortical organization. In this review, we highlight the potential for cortico-cortical evoked potential (CCEP) mapping to directly measure neuronal propagation across large-scale brain networks with spatio-temporal resolution that is superior to traditional neuroimaging methods. We first introduce effective connectivity and discuss the mechanisms underlying CCEP generation. Next, we highlight how CCEP mapping has begun to provide insight into the neural basis of non-invasive imaging signals. Finally, we present a novel approach to perturbing and measuring brain network function during cognitive processing. The direct measurement of CCEPs in response to electrical stimulation represents a potentially powerful clinical and basic science tool for probing the large-scale networks of the human cerebral cortex.


The Journal of Neuroscience | 2014

Corticocortical Evoked Potentials Reveal Projectors and Integrators in Human Brain Networks

Corey J. Keller; Christopher J. Honey; László Entz; Stephan Bickel; David M. Groppe; Emília Tóth; István Ulbert; Fred A. Lado; Ashesh D. Mehta

The cerebral cortex is composed of subregions whose functional specialization is largely determined by their incoming and outgoing connections with each other. In the present study, we asked which cortical regions can exert the greatest influence over other regions and the cortical network as a whole. Previous research on this question has relied on coarse anatomy (mapping large fiber pathways) or functional connectivity (mapping inter-regional statistical dependencies in ongoing activity). Here we combined direct electrical stimulation with recordings from the cortical surface to provide a novel insight into directed, inter-regional influence within the cerebral cortex of awake humans. These networks of directed interaction were reproducible across strength thresholds and across subjects. Directed network properties included (1) a decrease in the reciprocity of connections with distance; (2) major projector nodes (sources of influence) were found in peri-Rolandic cortex and posterior, basal and polar regions of the temporal lobe; and (3) major receiver nodes (receivers of influence) were found in anterolateral frontal, superior parietal, and superior temporal regions. Connectivity maps derived from electrical stimulation and from resting electrocorticography (ECoG) correlations showed similar spatial distributions for the same source node. However, higher-level network topology analysis revealed differences between electrical stimulation and ECoG that were partially related to the reciprocity of connections. Together, these findings inform our understanding of large-scale corticocortical influence as well as the interpretation of functional connectivity networks.


Cerebral Cortex | 2014

Exemplar Selectivity Reflects Perceptual Similarities in the Human Fusiform Cortex

Ido Davidesco; Elana Zion-Golumbic; Stephan Bickel; Michal Harel; David M. Groppe; Corey J. Keller; Catherine A. Schevon; Guy M. McKhann; Robert R. Goodman; Gadi Goelman; Charles E. Schroeder; Ashesh D. Mehta; Rafael Malach

While brain imaging studies emphasized the category selectivity of face-related areas, the underlying mechanisms of our remarkable ability to discriminate between different faces are less understood. Here, we recorded intracranial local field potentials from face-related areas in patients presented with images of faces and objects. A highly significant exemplar tuning within the category of faces was observed in high-Gamma (80-150 Hz) responses. The robustness of this effect was supported by single-trial decoding of face exemplars using a minimal (n = 5) training set. Importantly, exemplar tuning reflected the psychophysical distance between faces but not their low-level features. Our results reveal a neuronal substrate for the establishment of perceptual distance among faces in the human brain. They further imply that face neurons are anatomically grouped according to well-defined functional principles, such as perceptual similarity.


NeuroImage | 2013

Dominant frequencies of resting human brain activity as measured by the electrocorticogram

David M. Groppe; Stephan Bickel; Corey J. Keller; Sanjay K. Jain; Sean T. Hwang; Cynthia L. Harden; Ashesh D. Mehta

The brains spontaneous, intrinsic activity is increasingly being shown to reveal brain function, delineate large scale brain networks, and diagnose brain disorders. One of the most studied and clinically utilized types of intrinsic brain activity are oscillations in the electrocorticogram (ECoG), a relatively localized measure of cortical synaptic activity. Here we objectively characterize the types of ECoG oscillations commonly observed over particular cortical areas when an individual is awake and immobile with eyes closed, using a surface-based cortical atlas and cluster analysis. Both methods show that [1] there is generally substantial variability in the dominant frequencies of cortical regions and substantial overlap in dominant frequencies across the areas sampled (primarily lateral central, temporal, and frontal areas), [2] theta (4-8 Hz) is the most dominant type of oscillation in the areas sampled with a mode around 7 Hz, [3] alpha (8-13 Hz) is largely limited to parietal and occipital regions, and [4] beta (13-30 Hz) is prominent peri-Rolandically, over the middle frontal gyrus, and the pars opercularis. In addition, the cluster analysis revealed seven types of ECoG spectral power densities (SPDs). Six of these have peaks at 3, 5, 7 (narrow), 7 (broad), 10, and 17 Hz, while the remaining cluster is broadly distributed with less pronounced peaks at 8, 19, and 42 Hz. These categories largely corroborate conventional sub-gamma frequency band distinctions (delta, theta, alpha, and beta) and suggest multiple sub-types of theta. Finally, we note that gamma/high gamma activity (30+ Hz) was at times prominently observed, but was too infrequent and variable across individuals to be reliably characterized. These results should help identify abnormal patterns of ECoG oscillations, inform the interpretation of EEG/MEG intrinsic activity, and provide insight into the functions of these different oscillations and the networks that produce them. Specifically, our results support theories of the importance of theta oscillations in general cortical function, suggest that alpha activity is primarily related to sensory processing/attention, and demonstrate that beta networks extend far beyond primary sensorimotor regions.


Human Brain Mapping | 2014

Evoked effective connectivity of the human neocortex

László Entz; Emília Tóth; Corey J. Keller; Stephan Bickel; David M. Groppe; Dániel Fabó; Lajos R. Kozák; Loránd Erőss; István Ulbert; Ashesh D. Mehta

The role of cortical connectivity in brain function and pathology is increasingly being recognized. While in vivo magnetic resonance imaging studies have provided important insights into anatomical and functional connectivity, these methodologies are limited in their ability to detect electrophysiological activity and the causal relationships that underlie effective connectivity. Here, we describe results of cortico‐cortical evoked potential (CCEP) mapping using single pulse electrical stimulation in 25 patients undergoing seizure monitoring with subdural electrode arrays. Mapping was performed by stimulating adjacent electrode pairs and recording CCEPs from the remainder of the electrode array. CCEPs reliably revealed functional networks and showed an inverse relationship to distance between sites. Coregistration to Brodmann areas (BA) permitted group analysis. Connections were frequently directional with 43% of early responses and 50% of late responses of connections reflecting relative dominance of incoming or outgoing connections. The most consistent connections were seen as outgoing from motor cortex, BA6–BA9, somatosensory (SS) cortex, anterior cingulate cortex, and Brocas area. Network topology revealed motor, SS, and premotor cortices along with BA9 and BA10 and language areas to serve as hubs for cortical connections. BA20 and BA39 demonstrated the most consistent dominance of outdegree connections, while BA5, BA7, auditory cortex, and anterior cingulum demonstrated relatively greater indegree. This multicenter, large‐scale, directional study of local and long‐range cortical connectivity using direct recordings from awake, humans will aid the interpretation of noninvasive functional connectome studies. Hum Brain Mapp 35:5736–5753, 2014.


Brain and Language | 2009

Parallel versus serial processing dependencies in the perisylvian speech network: A Granger analysis of intracranial EEG data

David W. Gow; Corey J. Keller; Emand Eskandar; Nate Meng; Sydney S. Cash

In this work, we apply Granger causality analysis to high spatiotemporal resolution intracranial EEG (iEEG) data to examine how different components of the left perisylvian language network interact during spoken language perception. The specific focus is on the characterization of serial versus parallel processing dependencies in the dominant hemisphere dorsal and ventral speech processing streams. Analysis of iEEG data from a large, 64-electrode grid implanted over the left perisylvian region in a single right-handed patient showed a consistent pattern of direct posterior superior temporal gyrus influence over sites distributed over the entire ventral pathway for words, non-words, and phonetically ambiguous items that could be interpreted either as words or non-words. For the phonetically ambiguous items, this pattern was overlayed by additional dependencies involving the inferior frontal gyrus, which influenced activation measured at electrodes located in both ventral and dorsal stream speech structures. Implications of these results for understanding the functional architecture of spoken language processing and interpreting the role of the posterior superior temporal gyrus in speech perception are discussed.

Collaboration


Dive into the Corey J. Keller's collaboration.

Top Co-Authors

Avatar

Ashesh D. Mehta

The Feinstein Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephan Bickel

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

István Ulbert

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

László Entz

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Wei Wu

Stanford University

View shared research outputs
Top Co-Authors

Avatar

David M. Groppe

The Feinstein Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Fred A. Lado

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Emília Tóth

The Catholic University of America

View shared research outputs
Researchain Logo
Decentralizing Knowledge