Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Corey S. O’Hern is active.

Publication


Featured researches published by Corey S. O’Hern.


Cell | 2014

The Bacterial Cytoplasm Has Glass-like Properties and Is Fluidized by Metabolic Activity

Bradley Parry; Ivan Surovtsev; Matthew T. Cabeen; Corey S. O’Hern; Eric R. Dufresne; Christine Jacobs-Wagner

The physical nature of the bacterial cytoplasm is poorly understood even though it determines cytoplasmic dynamics and hence cellular physiology and behavior. Through single-particle tracking of protein filaments, plasmids, storage granules, and foreign particles of different sizes, we find that the bacterial cytoplasm displays properties that are characteristic of glass-forming liquids and changes from liquid-like to solid-like in a component size-dependent fashion. As a result, the motion of cytoplasmic components becomes disproportionally constrained with increasing size. Remarkably, cellular metabolism fluidizes the cytoplasm, allowing larger components to escape their local environment and explore larger regions of the cytoplasm. Consequently, cytoplasmic fluidity and dynamics dramatically change as cells shift between metabolically active and dormant states in response to fluctuating environments. Our findings provide insight into bacterial dormancy and have broad implications to our understanding of bacterial physiology, as the glassy behavior of the cytoplasm impacts all intracellular processes involving large components.


Biophysical Journal | 2012

The Conformational Ensembles of α-Synuclein and Tau: Combining Single-Molecule FRET and Simulations

Abhinav Nath; Maria Sammalkorpi; David C. DeWitt; Adam J. Trexler; Shana Elbaum-Garfinkle; Corey S. O’Hern; Elizabeth Rhoades

Intrinsically disordered proteins (IDPs) are increasingly recognized for their important roles in a range of biological contexts, both in normal physiological function and in a variety of devastating human diseases. However, their structural characterization by traditional biophysical methods, for the purposes of understanding their function and dysfunction, has proved challenging. Here, we investigate the model IDPs α-Synuclein (αS) and tau, that are involved in major neurodegenerative conditions including Parkinsons and Alzheimers diseases, using excluded volume Monte Carlo simulations constrained by pairwise distance distributions from single-molecule fluorescence measurements. Using this, to our knowledge, novel approach we find that a relatively small number of intermolecular distance constraints are sufficient to accurately determine the dimensions and polymer conformational statistics of αS and tau in solution. Moreover, this method can detect local changes in αS and tau conformations that correlate with enhanced aggregation. Constrained Monte Carlo simulations produce ensembles that are in excellent agreement both with experimental measurements on αS and tau and with all-atom, explicit solvent molecular dynamics simulations of αS, with much lower configurational sampling requirements and computational expense.


Optics Express | 2011

Short-range Order and Near-field Effects on Optical Scattering and Structural Coloration

Seng-Fatt Liew; Jason D. Forster; Heeso Noh; Carl Schreck; Vinod Kumar Saranathan; X. Lu; Lin Yang; Richard O. Prum; Corey S. O’Hern; Eric R. Dufresne; Hui Cao

We have investigated wavelength-dependent light scattering in biomimetic structures with short-range order. Coherent backscattering experiments are performed to measure the transport mean free path over a wide wavelength range. Overall scattering strength is reduced significantly due to short-range order and near-field effects. Our analysis explains why single scattering of light is dominant over multiple scattering in similar biological structures and is responsible for color generation.


PLOS ONE | 2013

Which Biomarkers Reveal Neonatal Sepsis

Kun Wang; Vineet Bhandari; Sofya Chepustanova; Greg Huber; Stephen O’Hara; Corey S. O’Hern; Mark D. Shattuck; Michael Kirby

We address the identification of optimal biomarkers for the rapid diagnosis of neonatal sepsis. We employ both canonical correlation analysis (CCA) and sparse support vector machine (SSVM) classifiers to select the best subset of biomarkers from a large hematological data set collected from infants with suspected sepsis from Yale-New Haven Hospitals Neonatal Intensive Care Unit (NICU). CCA is used to select sets of biomarkers of increasing size that are most highly correlated with infection. The effectiveness of these biomarkers is then validated by constructing a sparse support vector machine diagnostic classifier. We find that the following set of five biomarkers capture the essential diagnostic information (in order of importance): Bands, Platelets, neutrophil CD64, White Blood Cells, and Segs. Further, the diagnostic performance of the optimal set of biomarkers is significantly higher than that of isolated individual biomarkers. These results suggest an enhanced sepsis scoring system for neonatal sepsis that includes these five biomarkers. We demonstrate the robustness of our analysis by comparing CCA with the Forward Selection method and SSVM with LASSO Logistic Regression.


Physical Review E | 2011

Tuning jammed frictionless disk packings from isostatic to hyperstatic.

Carl Schreck; Corey S. O’Hern; Leonardo E. Silbert

We perform extensive computational studies of two-dimensional static bidisperse disk packings using two distinct packing-generation protocols. The first involves thermally quenching equilibrated liquid configurations to zero temperature over a range of thermal quench rates r and initial packing fractions followed by compression and decompression in small steps to reach packing fractions φ(J) at jamming onset. For the second, we seed the system with initial configurations that promote micro- and macrophase-separated packings followed by compression and decompression to φ(J). Using these protocols, we generate more than 10(4) static packings over a wide range of packing fraction, contact number, and compositional and positional order. We find that disordered, isostatic packings exist over a finite range of packing fractions in the large-system limit. In agreement with previous calculations, the most dilute mechanically stable packings with φ min ≈ 0.84 are obtained for r > r*, where r* is the rate above which φ(J) is insensitive to rate. We further compare the structural and mechanical properties of isostatic versus hyperstatic packings. The structural characterizations include the contact number, several order parameters, and mixing ratios of the large and small particles. We find that the isostatic packings are positionally and compositionally disordered (with only small changes in a number of order parameters), whereas bond-orientational and compositional order increase strongly with contact number for hyperstatic packings. In addition, we calculate the static shear modulus and normal mode frequencies (in the harmonic approximation) of the static packings to understand the extent to which the mechanical properties of disordered, isostatic packings differ from partially ordered packings. We find that the mechanical properties of the packings change continuously as the contact number increases from isostatic to hyperstatic.


Physical Review E | 2013

Particle-scale reversibility in athermal particulate media below jamming.

Carl Schreck; Robert S. Hoy; Mark D. Shattuck; Corey S. O’Hern

We perform numerical simulations of repulsive, frictionless athermal disks in two and three spatial dimensions undergoing cyclic quasistatic simple shear to investigate particle-scale reversible motion. We identify three classes of steady-state dynamics as a function of packing fraction φ and maximum strain amplitude per cycle γ(max). Point-reversible states, where particles do not collide and exactly retrace their intracycle trajectories, occur at low φ and γ(max). Particles in loop-reversible states undergo numerous collisions and execute complex trajectories but return to their initial positions at the end of each cycle. For sufficiently large φ and γ(max), systems display irreversible dynamics with nonzero self-diffusion. Loop-reversible dynamics enables the reliable preparation of configurations with specified structural and mechanical properties over a broad range of φ.


Biophysical Journal | 2013

New Insights into the Interdependence between Amino Acid Stereochemistry and Protein Structure

Alice Qinhua Zhou; Diego Caballero; Corey S. O’Hern; Lynne Regan

To successfully design new proteins and understand the effects of mutations in natural proteins, we must understand the geometric and physicochemical principles underlying protein structure. The side chains of amino acids in peptides and proteins adopt specific dihedral angle combinations; however, we still do not have a fundamental quantitative understanding of why some side-chain dihedral angle combinations are highly populated and others are not. Here we employ a hard-sphere plus stereochemical constraint model of dipeptide mimetics to enumerate the side-chain dihedral angles of leucine (Leu) and isoleucine (Ile), and identify those conformations that are sterically allowed versus those that are not as a function of the backbone dihedral angles ϕ and ψ. We compare our results with the observed distributions of side-chain dihedral angles in proteins of known structure. With the hard-sphere plus stereochemical constraint model, we obtain agreement between the model predictions and the observed side-chain dihedral angle distributions for Leu and Ile. These results quantify the extent to which local, geometrical constraints determine protein side-chain conformations.


Journal of Chemical Physics | 2015

The glass-forming ability of model metal-metalloid alloys

Kai Zhang; Yanhui Liu; Jan Schroers; Mark D. Shattuck; Corey S. O’Hern

Bulk metallic glasses (BMGs) are amorphous alloys with desirable mechanical properties and processing capabilities. To date, the design of new BMGs has largely employed empirical rules and trial-and-error experimental approaches. Ab initio computational methods are currently prohibitively slow to be practically used in searching the vast space of possible atomic combinations for bulk glass formers. Here, we perform molecular dynamics simulations of a coarse-grained, anisotropic potential, which mimics interatomic covalent bonding, to measure the critical cooling rates for metal-metalloid alloys as a function of the atomic size ratio σS/σL and number fraction xS of the metalloid species. We show that the regime in the space of σS/σL and xS where well-mixed, optimal glass formers occur for patchy and LJ particle mixtures, coincides with that for experimentally observed metal-metalloid glass formers. Thus, our simple computational model provides the capability to perform combinatorial searches to identify novel glass-forming alloys.


Journal of Chemical Physics | 2015

On the origin of multi-component bulk metallic glasses: Atomic size mismatches and de-mixing

Kai Zhang; Bradley Dice; Yanhui Liu; Jan Schroers; Mark D. Shattuck; Corey S. O’Hern

The likelihood that an undercooled liquid vitrifies or crystallizes depends on the cooling rate R. The critical cooling rate R(c), below which the liquid crystallizes upon cooling, characterizes the glass-forming ability (GFA) of the system. While pure metals are typically poor glass formers with R(c)>10(12)K/s, specific multi-component alloys can form bulk metallic glasses (BMGs) even at cooling rates below R∼1 K/s. Conventional wisdom asserts that metal alloys with three or more components are better glass formers (with smaller R(c)) than binary alloys. However, there is currently no theoretical framework that provides quantitative predictions for R(c) for multi-component alloys. In this manuscript, we perform simulations of ternary hard-sphere systems, which have been shown to be accurate models for the glass-forming ability of BMGs, to understand the roles of geometric frustration and demixing in determining R(c). Specifically, we compress ternary hard sphere mixtures into jammed packings and measure the critical compression rate, below which the system crystallizes, as a function of the diameter ratios σ(B)/σ(A) and σ(C)/σ(A) and number fractions x(A), x(B), and x(C). We find two distinct regimes for the GFA in parameter space for ternary hard spheres. When the diameter ratios are close to 1, such that the largest (A) and smallest (C) species are well-mixed, the GFA of ternary systems is no better than that of the optimal binary glass former. However, when σ(C)/σ(A) ≲ 0.8 is below the demixing threshold for binary systems, adding a third component B with σ(C) < σ(B) < σ(A) increases the GFA of the system by preventing demixing of A and C. Analysis of the available data from experimental studies indicates that most ternary BMGs are below the binary demixing threshold with σ(C)/σ(A) < 0.8.


BMC Genomics | 2013

Iterative feature removal yields highly discriminative pathways

Stephen O’Hara; Kun Wang; Richard A. Slayden; Alan R. Schenkel; Greg Huber; Corey S. O’Hern; Mark D. Shattuck; Michael Kirby

BackgroundWe introduce Iterative Feature Removal (IFR) as an unbiased approach for selecting features with diagnostic capacity from large data sets. The algorithm is based on recently developed tools in machine learning that are driven by sparse feature selection goals. When applied to genomic data, our method is designed to identify genes that can provide deeper insight into complex interactions while remaining directly connected to diagnostic utility. We contrast this approach with the search for a minimal best set of discriminative genes, which can provide only an incomplete picture of the biological complexity.ResultsMicroarray data sets typically contain far more features (genes) than samples. For this type of data, we demonstrate that there are many equivalently-predictive subsets of genes. We iteratively train a classifier using features identified via a sparse support vector machine. At each iteration, we remove all the features that were previously selected. We found that we could iterate many times before a sustained drop in accuracy occurs, with each iteration removing approximately 30 genes from consideration. The classification accuracy on test data remains essentially flat even as hundreds of top-genes are removed.Our method identifies sets of genes that are highly predictive, even when comprised of genes that individually are not. Through automated and manual analysis of the selected genes, we demonstrate that the selected features expose relevant pathways that other approaches would have missed.ConclusionsOur results challenge the paradigm of using feature selection techniques to design parsimonious classifiers from microarray and similar high-dimensional, small-sample-size data sets. The fact that there are many subsets of genes that work equally well to classify the data provides a strong counter-result to the notion that there is a small number of “top genes” that should be used to build classifiers. In our results, the best classifiers were formed using genes with limited univariate power, thus illustrating that deeper mining of features using multivariate techniques is important.

Collaboration


Dive into the Corey S. O’Hern's collaboration.

Top Co-Authors

Avatar

Mark D. Shattuck

City University of New York

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kun Wang

Colorado State University

View shared research outputs
Top Co-Authors

Avatar

Michael Kirby

Colorado State University

View shared research outputs
Top Co-Authors

Avatar

Greg Huber

Kavli Institute for Theoretical Physics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge