Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Corey T. Watson is active.

Publication


Featured researches published by Corey T. Watson.


Genome Research | 2010

A ChIP-seq defined genome-wide map of vitamin D receptor binding: Associations with disease and evolution

Sreeram V. Ramagopalan; Andreas Heger; Antonio J. Berlanga; Narelle J. Maugeri; Matthew R. Lincoln; Amy Burrell; Lahiru Handunnetthi; Adam E. Handel; Giulio Disanto; Sarah-Michelle Orton; Corey T. Watson; Julia M. Morahan; Gavin Giovannoni; Chris P. Ponting; George C. Ebers; Julian C. Knight

Initially thought to play a restricted role in calcium homeostasis, the pleiotropic actions of vitamin D in biology and their clinical significance are only now becoming apparent. However, the mode of action of vitamin D, through its cognate nuclear vitamin D receptor (VDR), and its contribution to diverse disorders, remain poorly understood. We determined VDR binding throughout the human genome using chromatin immunoprecipitation followed by massively parallel DNA sequencing (ChIP-seq). After calcitriol stimulation, we identified 2776 genomic positions occupied by the VDR and 229 genes with significant changes in expression in response to vitamin D. VDR binding sites were significantly enriched near autoimmune and cancer associated genes identified from genome-wide association (GWA) studies. Notable genes with VDR binding included IRF8, associated with MS, and PTPN2 associated with Crohns disease and T1D. Furthermore, a number of single nucleotide polymorphism associations from GWA were located directly within VDR binding intervals, for example, rs13385731 associated with SLE and rs947474 associated with T1D. We also observed significant enrichment of VDR intervals within regions of positive selection among individuals of Asian and European descent. ChIP-seq determination of transcription factor binding, in combination with GWA data, provides a powerful approach to further understanding the molecular bases of complex diseases.


American Journal of Human Genetics | 2013

Complete Haplotype Sequence of the Human Immunoglobulin Heavy-Chain Variable, Diversity, and Joining Genes and Characterization of Allelic and Copy-Number Variation

Corey T. Watson; Karyn Meltz Steinberg; John Huddleston; René L. Warren; Maika Malig; Jacqueline E. Schein; A. Jeremy Willsey; Jeffrey B. Joy; Jamie K. Scott; Tina Graves; Richard Wilson; Robert A. Holt; Evan E. Eichler; Felix Breden

The immunoglobulin heavy-chain locus (IGH) encodes variable (IGHV), diversity (IGHD), joining (IGHJ), and constant (IGHC) genes and is responsible for antibody heavy-chain biosynthesis, which is vital to the adaptive immune response. Programmed V-(D)-J somatic rearrangement and the complex duplicated nature of the locus have impeded attempts to reconcile its genomic organization based on traditional B-lymphocyte derived genetic material. As a result, sequence descriptions of germline variation within IGHV are lacking, haplotype inference using traditional linkage disequilibrium methods has been difficult, and the human genome reference assembly is missing several expressed IGHV genes. By using a hydatidiform mole BAC clone resource, we present the most complete haplotype of IGHV, IGHD, and IGHJ gene regions derived from a single chromosome, representing an alternate assembly of ∼1 Mbp of high-quality finished sequence. From this we add 101 kbp of previously uncharacterized sequence, including functional IGHV genes, and characterize four large germline copy-number variants (CNVs). In addition to this germline reference, we identify and characterize eight CNV-containing haplotypes from a panel of nine diploid genomes of diverse ethnic origin, discovering previously unmapped IGHV genes and an additional 121 kbp of insertion sequence. We genotype four of these CNVs by using PCR in 425 individuals from nine human populations. We find that all four are highly polymorphic and show considerable evidence of stratification (Fst = 0.3-0.5), with the greatest differences observed between African and Asian populations. These CNVs exhibit weak linkage disequilibrium with SNPs from two commercial arrays in most of the populations tested.


Annual Review of Genomics and Human Genetics | 2014

The Genetics of Microdeletion and Microduplication Syndromes: An Update

Corey T. Watson; Tomas Marques-Bonet; Andrew J. Sharp; Mefford Hc

Chromosomal abnormalities, including microdeletions and microduplications, have long been associated with abnormal developmental outcomes. Early discoveries relied on a common clinical presentation and the ability to detect chromosomal abnormalities by standard karyotype analysis or specific assays such as fluorescence in situ hybridization. Over the past decade, the development of novel genomic technologies has allowed more comprehensive, unbiased discovery of microdeletions and microduplications throughout the human genome. The ability to quickly interrogate large cohorts using chromosome microarrays and, more recently, next-generation sequencing has led to the rapid discovery of novel microdeletions and microduplications associated with disease, including very rare but clinically significant rearrangements. In addition, the observation that some microdeletions are associated with risk for several neurodevelopmental disorders contributes to our understanding of shared genetic susceptibility for such disorders. Here, we review current knowledge of microdeletion/duplication syndromes, with a particular focus on recurrent rearrangement syndromes.


Human Molecular Genetics | 2012

Vitamin D receptor binding, chromatin states and association with multiple sclerosis

Giulio Disanto; Geir Kjetil Sandve; Antonio J. Berlanga-Taylor; Giammario Ragnedda; Julia M. Morahan; Corey T. Watson; Gavin Giovannoni; George C. Ebers; Sreeram V. Ramagopalan

Both genetic and environmental factors contribute to the aetiology of multiple sclerosis (MS). More than 50 genomic regions have been associated with MS susceptibility and vitamin D status also influences the risk of this complex disease. However, how these factors interact in disease causation is unclear. We aimed to investigate the relationship between vitamin D receptor (VDR) binding in lymphoblastoid cell lines (LCLs), chromatin states in LCLs and MS-associated genomic regions. Using the Genomic Hyperbrowser, we found that VDR-binding regions overlapped with active regulatory regions [active promoter (AP) and strong enhancer (SE)] in LCLs more than expected by chance [45.3-fold enrichment for SE (P < 2.0e−05) and 63.41-fold enrichment for AP (P < 2.0e−05)]. Approximately 77% of VDR regions were covered by either AP or SE elements. The overlap between VDR binding and regulatory elements was significantly greater in LCLs than in non-immune cells (P < 2.0e−05). VDR binding also occurred within MS regions more than expected by chance (3.7-fold enrichment, P < 2.0e−05). Furthermore, regions of joint overlap SE-VDR and AP-VDR were even more enriched within MS regions and near to several disease-associated genes. These findings provide relevant insights into how vitamin D influences the immune system and the risk of MS through VDR interactions with the chromatin state inside MS regions. Furthermore, the data provide additional evidence for an important role played by B cells in MS. Further analyses in other immune cell types and functional studies are warranted to fully elucidate the role of vitamin D in the immune system.


PLOS ONE | 2009

Mechanisms underlying metabolic and neural defects in zebrafish and human multiple acyl-CoA dehydrogenase deficiency (MADD).

Yuanquan Song; Mary A. Selak; Corey T. Watson; Christopher A. Coutts; Paul C. Scherer; Jessica A. Panzer; Sarah M. Gibbs; Marion O. Scott; Gregory B. Willer; Ronald G. Gregg; Declan W. Ali; Michael Bennett; Rita J. Balice-Gordon

In humans, mutations in electron transfer flavoprotein (ETF) or electron transfer flavoprotein dehydrogenase (ETFDH) lead to MADD/glutaric aciduria type II, an autosomal recessively inherited disorder characterized by a broad spectrum of devastating neurological, systemic and metabolic symptoms. We show that a zebrafish mutant in ETFDH, xavier, and fibroblast cells from MADD patients demonstrate similar mitochondrial and metabolic abnormalities, including reduced oxidative phosphorylation, increased aerobic glycolysis, and upregulation of the PPARG-ERK pathway. This metabolic dysfunction is associated with aberrant neural proliferation in xav, in addition to other neural phenotypes and paralysis. Strikingly, a PPARG antagonist attenuates aberrant neural proliferation and alleviates paralysis in xav, while PPARG agonists increase neural proliferation in wild type embryos. These results show that mitochondrial dysfunction, leading to an increase in aerobic glycolysis, affects neurogenesis through the PPARG-ERK pathway, a potential target for therapeutic intervention.


Journal of Molecular Evolution | 2011

Gene Duplication and Divergence of Long Wavelength-Sensitive Opsin Genes in the Guppy, Poecilia reticulata

Corey T. Watson; Suzanne M. Gray; Margarete Hoffmann; Krzysztof P. Lubieniecki; Jeffrey B. Joy; Ben Sandkam; Detlef Weigel; Ellis R. Loew; Christine Dreyer; William S. Davidson; Felix Breden

Female preference for male orange coloration in the genus Poecilia suggests a role for duplicated long wavelength-sensitive (LWS) opsin genes in facilitating behaviors related to mate choice in these species. Previous work has shown that LWS gene duplication in this genus has resulted in expansion of long wavelength visual capacity as determined by microspectrophotometry (MSP). However, the relationship between LWS genomic repertoires and expression of LWS retinal cone classes within a given species is unclear. Our previous study in the related species, Xiphophorus helleri, was the first characterization of the complete LWS opsin genomic repertoire in conjunction with MSP expression data in the family Poeciliidae, and revealed the presence of four LWS loci and two distinct LWS cone classes. In this study we characterized the genomic organization of LWS opsin genes by BAC clone sequencing, and described the full range of cone cell types in the retina of the colorful Cumaná guppy, Poecilia reticulata. In contrast to X. helleri, MSP data from the Cumaná guppy revealed three LWS cone classes. Comparisons of LWS genomic organization described here for Cumaná to that of X. helleri indicate that gene divergence and not duplication was responsible for the evolution of a novel LWS haplotype in the Cumaná guppy. This lineage-specific divergence is likely responsible for a third additional retinal cone class not present in X. helleri, and may have facilitated the strong sexual selection driven by female preference for orange color patterns associated with the genus Poecilia.


BMC Evolutionary Biology | 2010

Genomic organization of duplicated short wave- sensitive and long wave-sensitive opsin genes in the green swordtail, Xiphophorus helleri

Corey T. Watson; Krzysztof P. Lubieniecki; Ellis R. Loew; William S. Davidson; Felix Breden

BackgroundLong wave-sensitive (LWS) opsin genes have undergone multiple lineage-specific duplication events throughout the evolution of teleost fishes. LWS repertoire expansions in live-bearing fishes (family Poeciliidae) have equipped multiple species in this family with up to four LWS genes. Given that color vision, especially attraction to orange male coloration, is important to mate choice within poeciliids, LWS opsins have been proposed as candidate genes driving sexual selection in this family. To date the genomic organization of these genes has not been described in the family Poeciliidae, and little is known about the mechanisms regulating the expression of LWS opsins in any teleost.ResultsTwo BAC clones containing the complete genomic repertoire of LWS opsin genes in the green swordtail fish, Xiphophorus helleri, were identified and sequenced. Three of the four LWS loci identified here were linked in a tandem array downstream of two tightly linked short wave-sensitive 2 (SWS2) opsin genes. The fourth LWS opsin gene, containing only a single intron, was not linked to the other three and is the product of a retrotransposition event. Genomic and phylogenetic results demonstrate that the LWS genes described here share a common evolutionary origin with those previously characterized in other poeciliids. Using qualitative RT-PCR and MSP we showed that each of the LWS and SWS2 opsins, as well as three other cone opsin genes and a single rod opsin gene, were expressed in the eyes of adult female and male X. helleri, contributing to six separate classes of adult retinal cone and rod cells with average λmax values of 365 nm, 405 nm, 459 nm, 499 nm, 534 nm and 568 nm. Comparative genomic analysis identified two candidate teleost opsin regulatory regions containing putative CRX binding sites and hormone response elements in upstream sequences of LWS gene regions of seven teleost species, including X. helleri.ConclusionsWe report the first complete genomic description of LWS and SWS2 genes in poeciliids. These data will serve as a reference for future work seeking to understand the relationship between LWS opsin genomic organization, gene expression, gene family evolution, sexual selection and speciation in this fish family.


PLOS ONE | 2010

The Effect of Single Nucleotide Polymorphisms from Genome Wide Association Studies in Multiple Sclerosis on Gene Expression

Adam E. Handel; Lahiru Handunnetthi; Antonio J. Berlanga; Corey T. Watson; Julia M. Morahan; Sreeram V. Ramagopalan

Background Multiple sclerosis (MS) is a complex neurological disorder. Its aetiology involves both environmental and genetic factors. Recent genome-wide association studies have identified a number of single nucleotide polymorphisms (SNPs) associated with susceptibility to (MS). We investigated whether these genetic variations were associated with alteration in gene expression. Methods/Principal Findings We used a database of mRNA expression and genetic variation derived from immortalised peripheral lymphocytes to investigate polymorphisms associated with MS for correlation with gene expression. Several SNPs were found to be associated with changes in expression: in particular two with HLA-DQA1, HLA-DQA2, HLA-DQB1, HLA-DRB1, HLA-DRB4 and HLA-DRB5, one with ZFP57, one with CD58, two with IL7 and FAM164A, and one with FAM119B, TSFM and KUB3. We found minimal cross-over with a recent whole genome expression study in MS patients. Discussion We have shown that many susceptibility loci in MS are associated with changes in gene expression using an unbiased expression database. Several of these findings suggest novel gene candidates underlying the effects of MS-associated genetic variation.


Neuropsychopharmacology | 2015

Genome-Wide DNA Methylation Profiling Reveals Epigenetic Changes in the Rat Nucleus Accumbens Associated With Cross-Generational Effects of Adolescent THC Exposure

Corey T. Watson; Henrietta Szutorisz; Paras Garg; Qammarah Martin; Joseph A. Landry; Andrew J. Sharp; Yasmin L. Hurd

Drug exposure during critical periods of development is known to have lasting effects, increasing one’s risk for developing mental health disorders. Emerging evidence has also indicated the possibility for drug exposure to even impact subsequent generations. Our previous work demonstrated that adolescent exposure to Δ9-tetrahydrocannabinol (THC), the main psychoactive component of marijuana (Cannabis sativa), in a Long-Evans rat model affects reward-related behavior and gene regulation in the subsequent (F1) generation unexposed to the drug. Questions, however, remained regarding potential epigenetic consequences. In the current study, using the same rat model, we employed Enhanced Reduced Representation Bisulfite Sequencing to interrogate the epigenome of the nucleus accumbens, a key brain area involved in reward processing. This analysis compared 16 animals with parental THC exposure and 16 without to characterize relevant systems-level changes in DNA methylation. We identified 1027 differentially methylated regions (DMRs) associated with parental THC exposure in F1 adults, each represented by multiple CpGs. These DMRs fell predominantly within introns, exons, and intergenic intervals, while showing a significant depletion in gene promoters. From these, we identified a network of DMR-associated genes involved in glutamatergic synaptic regulation, which also exhibited altered mRNA expression in the nucleus accumbens. These data provide novel insight into drug-related cross-generational epigenetic effects, and serve as a useful resource for investigators to explore novel neurobiological systems underlying drug abuse vulnerability.


Scientific Reports | 2016

IGHV1-69 polymorphism modulates anti-influenza antibody repertoires, correlates with IGHV utilization shifts and varies by ethnicity

Yuval Avnir; Corey T. Watson; Jacob Glanville; Eric C. Peterson; Aimee St. Clair Tallarico; Andrew S. Bennett; Kun Qin; Ying Fu; Chiung Yu Huang; John Beigel; Felix Breden; Quan Zhu; Wayne A. Marasco

IGHV polymorphism provides a rich source of humoral immune system diversity. One important example is the IGHV1-69 germline gene where the biased use of alleles that encode the critical CDR-H2 Phe54 (F-alleles) to make broadly neutralizing antibodies (HV1-69-sBnAb) to the influenza A hemagglutinin stem domain has been clearly established. However, whether IGHV1-69 polymorphism can also modulate B cell function and Ab repertoire expression through promoter and copy number (CN) variations has not been reported, nor has whether IGHV1-69 allelic distribution is impacted by ethnicity. Here we studied a cohort of NIH H5N1 vaccinees and demonstrate for the first time the influence of IGHV1-69 polymorphism on V-segment usage, somatic hypermutation and B cell expansion that elucidates the dominance of F-alleles in HV1-69-sBnAbs. We provide evidence that Phe54/Leu54 (F/L) polymorphism correlates with shifted repertoire usage of other IGHV germline genes. In addition, we analyzed ethnically diverse individuals within the 1000 genomes project and discovered marked variations in F- and L- genotypes and CN among the various ethnic groups that may impact HV1-69-sBnAb responses. These results have immediate implications for understanding HV1-69-sBnAb responses at the individual and population level and for the design and implementation of “universal” influenza vaccine.

Collaboration


Dive into the Corey T. Watson's collaboration.

Top Co-Authors

Avatar

Felix Breden

Simon Fraser University

View shared research outputs
Top Co-Authors

Avatar

Andrew J. Sharp

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Paras Garg

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gavin Giovannoni

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar

Giulio Disanto

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Julia M. Morahan

Wellcome Trust Centre for Human Genetics

View shared research outputs
Researchain Logo
Decentralizing Knowledge