Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Corina Graciano is active.

Publication


Featured researches published by Corina Graciano.


Tree Physiology | 2013

Dry weight partitioning and hydraulic traits in young Pinus taeda trees fertilized with nitrogen and phosphorus in a subtropical area

Laura Inés Faustino; Nardia Maria Luján Bulfe; Martín Alcides Pinazo; Silvia Monteoliva; Corina Graciano

Plants of Pinus taeda L. from each of four families were fertilized with nitrogen (N), phosphorus (P) or N + P at planting. The H family had the highest growth in dry mass while the L family had the lowest growth. Measurements of plant hydraulic architecture traits were performed during the first year after planting. Stomatal conductance (gs), water potential at predawn (Ψpredawn) and at midday (Ψmidday), branch hydraulic conductivity (ks and kl) and shoot hydraulic conductance (K) were measured. One year after planting, dry weight partitioning of all aboveground organs was performed. Phosphorus fertilization increased growth in all four families, while N fertilization had a negative effect on growth. L family plants were more negatively affected than H family plants. This negative effect was not due to limitations in N or P uptake because plants from all the families and treatments had the same N and P concentration in the needles. Phosphorus fertilization changed some hydraulic parameters, but those changes did not affect growth. However, the negative effect of N can be explained by changes in hydraulic traits. L family plants had a high leaf dry weight per branch, which was increased by N fertilization. This change occurred together with a decrease in shoot conductance. Therefore, the reduction in gs was not enough to avoid the drop in Ψmidday. Consequently, stomatal closure and the deficient water status of the needles resulted in a reduction in growth. In H family plants, the increase in the number of needles per branch due to N fertilization was counteracted by a reduction in gs and also by a reduction in tracheid lumen size and length. Because of these two changes, Ψmidday did not drop and water availability in the needles was adequate for sustained growth. In conclusion, fertilization affects the hydraulic architecture of plants, and different families develop different strategies. Some of the hydraulic changes can explain the negative effect of N fertilization on growth.


Crop & Pasture Science | 2012

Analysis of early vigour in twenty modern cultivars of bread wheat (Triticum aestivum L.)

M.L. Maydup; Corina Graciano; Juan J. Guiamet; Eduardo Tambussi

Abstract. Fast development of seedling leaf area is a relevant trait in order to increase early resource acquisition. The use of semi-dwarf genotypes of wheat has decreased early vigour of modern cultivars. We studied early vigour of 20 cultivars cropped in Argentina, and our main objectives were: (i) to analyse the genotypic variability in early vigour; (ii) to study morphological traits that can be good indicators of early vigour, such as seed mass, leaf width, and specific leaf area; and (iii) to determine whether increased dry mass allocation to roots impacts negatively on early vigour. Experiments with non-size-selected and size-selected seeds were carried out in a greenhouse. A field trial was also conducted in order to test the reliability of the greenhouse results. Seeds mass was the main parameter related to early vigour. However, results from the experiment with seeds selected by size (45–50 mg seed–1) showed that seed mass per se only partially explains early vigour, since a significant coefficient of determination was observed between the seedling leaf area of each cultivar in both experiments (i.e. with randomly chosen or size-selected seeds). We observed a high coefficient of determination between net assimilation rate and changes in the ranking of early vigour of the cultivars with time after transplant. Root biomass was positively correlated with leaf area, indicating that the traits were not mutually exclusive. We built simple models by multiple regression to predict early vigour, including some parameters that were easy to measure. Seed mass and leaf width taken together showed better fit than seed mass or leaf width alone. We found a significant coefficient of determination between early vigour in greenhouse and field experiments; thus, screening for early vigour under semi-controlled conditions may be feasible.


Plant and Soil | 2009

Dry mass partitioning and nitrogen uptake by Eucalyptus grandis plants in response to localized or mixed application of phosphorus

Corina Graciano; Eduardo Tambussi; Elisa Castán; Juan J. Guiamet

Plants respond to nutrient rich patches by changing root morphology and physiology. The aim of this paper was to analyze shoot and root growth of Eucalyptus grandis plants fertilized with the same amount of phosphorus applied in two different ways: thoroughly mixed in the soil or localized in a single hole near the plant. Localized fertilization increased root mass in the zone where fertilizer was applied, but total root mass was not altered by the type of fertilization application. With mixed fertilization plant growth was less than with localized fertilization, and plants showed nitrogen deficiency. Nitrogen uptake was measured in a split-root hydroponics system where phosphate was applied to the whole root system or in part of it. Growth of plants receiving phosphorus in the whole root system was limited by nitrogen uptake, as was revealed by low leaf N and low nitrate uptake. In conclusion, the positive effect of localized application of phosphorus must be ascribed not only to higher phosphorus but also to sustained nitrogen assimilation.


Journal of Sustainable Forestry | 2008

Fertilization in a Fourth Rotation Eucalyptus grandis Plantation with Minimal Management

Corina Graciano; Juan F. Goya; Marcelo Fabián Arturi; Carolina Alejandra Pérez; Jorge Luis Frangi

ABSTRACT Successive rotation and wood harvest of fast growing trees, like Eucalyptus grandis, can deplete soil nutrient pools. In these intensively used soils, productivity can decrease, and fertilization can be necessary to recover soil fertility. The aim of this work is to evaluate if fertilization with N and P increases tree growth and foliar nutrients in an Eucalyptus grandis plantation growing over a soil used for three rotations of this species. In the same experiment, both fertilization on seedlings and coppiced trees were evaluated. One and two years after planting, any fertilization treatment increased tree growth, even though coppiced trees had higher total height and DBH than replanted trees. Coppiced trees had lower specific leaf area, as well as lower N and P leaf concentration. The lack of promotion in growth due to fertilization can be explained by the inputs of nutrients from the harvest residues of the previous rotation. As residues were never burned in this site, its decomposition released a high part of nutrients necessary to sustain growth during the first two years. We conclude that in sites where residues were left on site and were not burned, nutrient availability is enough and so fertilization at establishment is not necessary. It remains to be determined if fertilization is necessary at mid or end rotation, in order to balance nutrients export with harvest wood.


Trees-structure and Function | 2017

The spatial distribution of phosphate in the root system modulates N metabolism and growth in Eucalyptus grandis young plants

Lorenza Costa; Laura I. Faustino; Corina Graciano

Key messageHigh P homogeneously applied in roots reduced growth and nitrate uptake. High P in a patch reduced N in tissues but did not reduce growth, because root hydraulic conductivity increased.AbstractLittle is known about consequences of nutrient imbalances, i.e., when the increase of one nutrient’s availability, in non-toxic concentration, reduces plant growth, because other nutrient availability is low. In a soil with low N (nitrogen) availability, high homogeneous P (phosphorus) availability reduced nitrate uptake and reduced growth of Eucalyptus grandis plants. However, if the same availability of P was applied only in a part of the root system (localized), no depressive effect was observed. In this work, it was analyzed which step in the early assimilation of N was affected by high homogeneous P and how localized P counteracted this depressive effect. Inorganic forms of N and protein in plant tissues as well as some plant hydraulic traits were analyzed in an experiment with E. grandis plants growing in perlite in a split-root system fed with low N. Control plants received low P. High P was applied in two spatial distributions: localized in one part of the root system (LP) or distributed homogeneously in both parts (HP). HP reduced growth, while LP had no depressive effect in growth. Both high P spatial distributions reduced concentration of nitrate in roots. Since concentration of nitrate in the xylem was similar in all treatments and nitrate in leaves was lower in high P than in control treatment, the reduction in root N was probably due to lower uptake. Nevertheless, plants growing with LP had no depressive effect in growth, because the decrease in N assimilation was counteracted by an increase of root hydraulic conductivity.


Frontiers in Plant Science | 2017

Phosphorous Application Improves Drought Tolerance of Phoebe zhennan

Akash Tariq; Kaiwen Pan; Olusanya Abiodun Olatunji; Corina Graciano; Zilong Li; Feng Sun; Dagang Song; Wenkai Chen; Aiping Zhang; Xiaogang Wu; Lin Zhang; Deng Mingrui; Qinli Xiong; Chenggang Liu

Phoebe zhennan (Gold Phoebe) is a threatened tree species in China and a valuable and important source of wood and bioactive compounds used in medicine. Apart from anthropogenic disturbances, several biotic constraints currently restrict its growth and development. However, little attention has been given to building adaptive strategies for its conservation by examining its morphological and physio-biochemical responses to drought stress, and the role of fertilizers on these responses. A randomized experimental design was used to investigate the effects of two levels of irrigation (well-watered and drought-stressed) and phosphorous (P) fertilization treatment (with and without P) to assess the morphological and physio-biochemical responses of P. zhennan seedlings to drought stress. In addition, we evaluated whether P application could mitigate the negative impacts of drought on plant growth and metabolism. Drought stress had a significant negative effect on the growth and metabolic processes of P. zhennan. Despite this, reduced leaf area, limited stomatal conductance, reduced transpiration rate, increased water use efficiency, enhanced antioxidant enzymes activities, and osmolytes accumulation suggested that the species has good adaptive strategies for tolerating drought stress. Application of P had a significant positive effect on root biomass, signifying its improved water extracting capacity from the soil. Moreover, P fertilization significantly increased leaf relative water content, net photosynthetic rate, and maximal quantum efficiency of PSII under drought stress conditions. This may be attributable to several factors, such as enhanced root biomass, decreased malondialdehyde content, and the up-regulation of chloroplast pigments, osmolytes, and nitrogenous compounds. However, P application had only a slight or negligible effect on the growth and metabolism of well-watered plants. In conclusion, P. zhennan has a strong capability for drought resistance, while P application facilitates and improves drought tolerance mostly through physio-biochemical adjustments, regardless of water availability. It is imperative to explore the underlying metabolic mechanisms and effects of different levels of P fertilization on P. zhennan under drought conditions in order to design appropriate conservation and management strategies for this species, which is at risk of extinction.


Tree Physiology | 2018

Plant–pathogen interactions: leaf physiology alterations in poplars infected with rust (Melampsora medusae)

Fermín Gortari; Juan J. Guiamet; Corina Graciano

Rust produced by Melampsora sp. is considered one of the most relevant diseases in poplar plantations. Growth reduction in poplar plantations takes place because rust, like other pathogens, alters leaf physiology. There is not a complete evaluation of several of the physiological traits that can be affected by rust at leaf level. Therefore, the aim of this work was to evaluate, in an integrative way and in the same pathosystem, which physiological processes are affected when Populus deltoides Bartr. ex Marsh. leaves are infected by rust (Melampsora medusae Thümen). Leaves of two clones with different susceptibility to rust were analyzed. Field and pot experiments were performed, and several physiological traits were measured in healthy and infected leaves. We conclude that rust affects leaf mesophyll integrity, and so water movement in the leaf in liquid phase is affected. As a consequence, gas exchange is reduced, affecting both carbon fixation and transpiration. However, there is an increase in respiration rate, probably due to plant and fungal respiration. The increase in respiration rate is important in the reduction of net photosynthetic rate, but also some damage in the photosynthetic apparatus limits leaf capacity to fix carbon. The decrease in chlorophyll content would start later and seems not to explain the reduction in net photosynthetic rate. Both clones, although they have different susceptibility to rust, are affected in the same physiological mechanisms.


Tree Physiology | 2018

Poplar leaf rust reduces dry mass accumulation and internal nitrogen recycling more markedly under low soil nitrogen availability, and decreases growth in the following spring

Fermín Gortari; Juan J. Guiamet; Silvia Cora Cortizo; Corina Graciano

Rust is one of the most important biotic stress factors that affect poplars. The aims of this work were: (i) to analyze the changes in growth and nitrogen (N) accumulation in Populus deltoides W. Bartram ex Marshall plants infected with rust (Melampsora medusae Thümen.) and to determine how internal N stores are affected by the disease, in plants growing under two N availabilities in the soil; and (ii) to evaluate the impact of rust in the early sprout in the following growing season and the cumulative effect of the disease after repeated infections. Two clones with different susceptibility to rust were analyzed. At leaf level, rust reduced gas exchange capacity, water conductance in liquid phase and photosynthetic rate in both clones. At plant level, rust reduced plant growth, accelerated leaf senescence and abscission occurred with a higher concentration of leaf N. Even though N concentration in stems and roots were not significantly reduced by rust, total N accumulation in perennial tissues was reduced in infected plants. The vigor of the early sprout of plants infected by rust in the previous season was lower than that of non-infected plants. Therefore, rust affects plant growth by reducing the photosynthetic capacity and leaf area duration, and by decreasing internal nutrient recycling. As nutrient reserves in perennial tissues are lower, rust infection reduces not only the growth of the current season, but also has a cumulative effect on the following years. The reduction of growth was similar in both clones. High availability of N in the soil had no effect on leaf physiology but increased plant growth, delayed leaf senescence and abscission, and increased total N accumulation. If fertilization increases plant growth (stem and root dry mass) it can mitigate the negative effect of the pathogen in the reduction of nutrient storages and future growth.


Scientific Reports | 2018

Phosphorous fertilization alleviates drought effects on Alnus cremastogyne by regulating its antioxidant and osmotic potential

Akash Tariq; Kaiwen Pan; Olusanya Abiodun Olatunji; Corina Graciano; Zilong Li; Feng Sun; Lin Zhang; Xiaogang Wu; Wenkai Chen; Dagang Song; Dan Huang; Tan Xue; Aiping Zhang

Alnus cremastogyne, a broad-leaved tree endemic to south-western China, has both commercial and restoration importance. However, little is known of its morphological, physiological and biochemical responses to drought and phosphorous (P) application. A randomized experimental design was used to investigate how drought affected A. cremastogyne seedlings, and the role that P applications play in these responses. Drought had significant negative effects on A. cremastogyne growth and metabolism, as revealed by reduced biomass (leaf, shoot and root), leaf area, stem diameter, plant height, photosynthetic rate, leaf relative water content, and photosynthetic pigments, and a weakened antioxidative defence mechanism and high lipid peroxidation level. However, the reduced leaf area and enhanced osmolyte (proline and soluble sugars) accumulation suggests drought avoidance and tolerance strategies in this tree. Applying P significantly improved the leaf relative water content and photosynthetic rate of drought-stressed seedlings, which may reflect increased anti-oxidative enzyme (superoxide dismutase, catalase and peroxidase) activities, osmolyte accumulation, soluble proteins, and decreased lipid peroxidation levels. However, P had only a slight or negligible effect on the well-watered plants. A. cremastogyne is sensitive to drought stress, but P facilitates and improves its metabolism primarily via biochemical and physiological rather than morphological adjustments, regardless of water availability.


Bosque (valdivia) | 2016

Bases fisiológicas del crecimiento diferencial en la fase inicial del desarrollo de dos progenies de Pinus taeda bajo condiciones de campo, en Misiones Argentina

Nardia Maria Luján Bulfe; Laura I. Faustino; Martín Alcides Pinazo; Corina Graciano; María Elena Fernández

Fil: Bulfe, Nardia M. L.. Instituto Nacional de Tecnologia Agropecuaria. Centro Regional Misiones. Estacion Experimental Agropecuaria Montecarlo; Argentina

Collaboration


Dive into the Corina Graciano's collaboration.

Top Co-Authors

Avatar

Juan J. Guiamet

National University of La Plata

View shared research outputs
Top Co-Authors

Avatar

Juan F. Goya

National University of La Plata

View shared research outputs
Top Co-Authors

Avatar

Laura I. Faustino

National University of La Plata

View shared research outputs
Top Co-Authors

Avatar

Daniel O. Caldiz

National University of La Plata

View shared research outputs
Top Co-Authors

Avatar

Eduardo Tambussi

National University of La Plata

View shared research outputs
Top Co-Authors

Avatar

Fermín Gortari

National University of La Plata

View shared research outputs
Top Co-Authors

Avatar

Jorge Luis Frangi

National University of La Plata

View shared research outputs
Top Co-Authors

Avatar

M.L. Maydup

National University of La Plata

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge