Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Corina Rosales is active.

Publication


Featured researches published by Corina Rosales.


Biochemistry | 2010

Speciated human high-density lipoprotein protein proximity profiles

Kekulawalage Gauthamadasa; Corina Rosales; Henry J. Pownall; Stephen Macha; W. Gray Jerome; Rong Huang; R. A. Gangani D. Silva

It is expected that the attendant structural heterogeneity of human high-density lipoprotein (HDL) complexes is a determinant of its varied metabolic functions. To determine the structural heterogeneity of HDL, we determined major apolipoprotein stoichiometry profiles in human HDL. First, HDL was separated into two main populations, with and without apolipoprotein (apo) A-II, LpA-I and LpA-I/A-II, respectively. Each main population was further separated into six individual subfractions using size exclusion chromatography (SEC). Protein proximity profiles (PPPs) of major apolipoproteins in each individual subfraction was determined by optimally cross-linking apolipoproteins within individual particles with bis(sulfosuccinimidyl) suberate (BS(3)), a bifunctional cross-linker, followed by molecular mass determination by MALDI-MS. The PPPs of LpA-I subfractions indicated that the number of apoA-I molecules increased from two to three to four with an increase in the LpA-I particle size. On the other hand, the entire population of LpA-I/A-II demonstrated the presence of only two proximal apoA-I molecules per particle, while the number of apoA-II molecules varied from one dimeric apoA-II to two and then to three. For most of the PPPs described above, an additional population that contained a single molecule of apoC-III in addition to apoA-I and/or apoA-II was detected. Upon composition analyses of individual subpopulations, LpA-I/A-II exhibited comparable proportions for total protein (∼58%), phospholipids (∼21%), total cholesterol (∼16%), triglycerides (∼5%), and free cholesterol (∼4%) across subfractions. LpA-I components, on the other hand, showed significant variability. This novel information about HDL subfractions will form a basis for an improved understanding of particle-specific functions of HDL.


Biochemistry | 2009

Disruption of human plasma high-density lipoproteins by streptococcal serum opacity factor requires labile apolipoprotein A-I.

Mikyung Han; Baiba K. Gillard; Harry S. Courtney; Kathryn Ward; Corina Rosales; Htet A. Khant; Steven J. Ludtke; Henry J. Pownall

Human plasma high-density lipoproteins (HDL), the primary vehicle for reverse cholesterol transport, are the target of serum opacity factor (SOF), a virulence determinant of Streptococcus pyogenes that turns serum opaque. HDL comprise a core of neutral lipidscholesteryl esters and some triglyceridesurrounded by a surface monolayer of cholesterol, phospholipids, and specialized proteins [apolipoproteins (apos) A-I and A-II]. A HDL is an unstable particle residing in a kinetic trap from which it can escape via chaotropic, detergent, or thermal perturbation. Recombinant (r) SOF catalyzes the transfer of nearly all neutral lipids of approximately 100,000 HDL particles (D approximately 8.5 nm) into a single, large cholesteryl ester-rich microemulsion (CERM; D > 100 nm), leaving a new HDL-like particle [neo HDL (D approximately 5.8 nm)] while releasing lipid-free (LF) apo A-I. CERM formation and apo A-I release have similar kinetics, suggesting parallel or rapid consecutive steps. By using complementary physicochemical methods, we have refined the mechanistic model for HDL opacification. According to size exclusion chromatography, a HDL containing nonlabile apo A-I resists rSOF-mediated opacification. On the basis of kinetic cryo-electron microscopy, rSOF (10 nM) catalyzes the conversion of HDL (4 microM) to neo HDL via a stepwise mechanism in which intermediate-sized particles are seen. Kinetic turbidimetry revealed opacification as a rising exponential reaction with a rate constant k of (4.400 +/- 0.004) x 10(-2) min(-1). Analysis of the kinetic data using transition state theory gave an enthalpy (DeltaH()), entropy (DeltaS(++)), and free energy (DeltaG()) of activation of 73.9 kJ/mol, -66.87 J/K, and 94.6 kJ/mol, respectively. The free energy of activation for opacification is nearly identical to that for the displacement of apo A-I from HDL by guanidine hydrochloride. We conclude that apo A-I lability is required for HDL opacification, LF apo A-I desorption is the rate-limiting step, and nearly all HDL particles contain at least one labile copy of apo A-I.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2011

Apolipoprotein E Mediates Enhanced Plasma High-Density Lipoprotein Cholesterol Clearance by Low-Dose Streptococcal Serum Opacity Factor via Hepatic Low-Density Lipoprotein Receptors In Vivo

Corina Rosales; Daming Tang; Baiba K. Gillard; Harry S. Courtney; Henry J. Pownall

Objective—Recombinant streptococcal serum opacity factor (rSOF) mediates the in vitro disassembly of human plasma high-density lipoprotein (HDL) into lipid-free apolipoprotein (apo) A-I, a neo-HDL that is cholesterol poor, and a cholesteryl ester–rich microemulsion (CERM) containing apoE. Given the occurrence of apoE on the CERM, we tested the hypothesis that rSOF injection into mice would reduce total plasma cholesterol clearance via apoE-dependent hepatic low-density lipoprotein receptors (LDLR). Methods and Results—rSOF (4 &mgr;g) injection into wild-type C57BL/6J mice formed neo-HDL, CERM, and lipid-free apoA-I, as observed in vitro, and reduced plasma total cholesterol (−43%, t1/2=44±18 minutes) whereas control saline injections had a negligible effect. Similar experiments with apoE−/− and LDLR−/− mice reduced plasma total cholesterol ≈0% and 20%, respectively. rSOF was potent; injection of 0.18 &mgr;g of rSOF produced 50% of maximum reduction of plasma cholesterol 3 hours postinjection, corresponding to a ≈0.5-mg human dose. Most cholesterol was cleared hepatically (>99%), with rSOF treatment increasing clearance by 65%. Conclusion—rSOF injection into mice formed a CERM that was cleared via hepatic LDLR that recognize apoE. This reaction could provide an alternative mechanism for reverse cholesterol transport.


Biochemistry | 2010

Streptococcal Serum Opacity Factor Increases the Rate of Hepatocyte Uptake of Human Plasma High-Density Lipoprotein Cholesterol

Baiba K. Gillard; Corina Rosales; Biju K. Pillai; Hu Yu Lin; Harry S. Courtney; Henry J. Pownall

Serum opacity factor (SOF), a virulence determinant of Streptococcus pyogenes, converts plasma high-density lipoproteins (HDL) to three distinct species: lipid-free apolipoprotein (apo) A-I, neo HDL, a small discoidal HDL-like particle, and a large cholesteryl ester-rich microemulsion (CERM) that contains the cholesterol esters (CE) of up to ∼400000 HDL particles and apo E as its major protein. Similar SOF reaction products are obtained with HDL, total plasma lipoproteins, and whole plasma. We hypothesized that hepatic uptake of CERM-CE via multiple apo E-dependent receptors would be faster than that of HDL-CE. We tested our hypothesis using human hepatoma cells and lipoprotein receptor-specific Chinese hamster ovary (CHO) cells. The uptake of [(3)H]CE by HepG2 and Huh7 cells from HDL after SOF treatment, which transfers >90% of HDL-CE to CERM, was 2.4 and 4.5 times faster, respectively, than from control HDL. CERM-[(3)H]CE uptake was inhibited by LDL and HDL, suggestive of uptake by both the LDL receptor (LDL-R) and scavenger receptor class B type I (SR-BI). Studies in CHO cells specifically expressing LDL-R and SR-BI confirmed CERM-[(3)H]CE uptake by both receptors. RAP and heparin inhibit CERM-[(3)H]CE but not HDL-[(3)H]CE uptake, thereby implicating LRP-1 and cell surface proteoglycans in this process. These data demonstrate that SOF treatment of HDL increases the rate of CE uptake via multiple hepatic apo E receptors. In so doing, SOF might increase the level of hepatic disposal of plasma cholesterol in a way that is therapeutically useful.


Lipids | 2010

Serum Opacity Factor Enhances HDL-Mediated Cholesterol Efflux, Esterification and Anti Inflammatory Effects

Urbain Tchoua; Corina Rosales; Daming Tang; Baiba K. Gillard; Ashley M. Vaughan; Hu Yu Lin; Harry S. Courtney; Henry J. Pownall

Serum opacity factor (SOF) is a streptococcal protein that disrupts the structure of human high density lipoproteins (HDL) releasing lipid-free apo A-I while forming a large cholesteryl ester-rich particle and a small neo HDL. Given its low cholesterol and high phospholipid contents, we tested the hypotheses that neo HDL is a better substrate for cholesterol esterification via lecithin:cholesterol acyltransferase (LCAT), better than HDL as an acceptor of THP-1 macrophage cholesterol efflux, and improves reduction of oxidized LDL-induced production of inflammatory markers. We observed that both cholesterol efflux and esterification were improved by recombinant (r)SOF treatment of whole plasma and that the underlying cause of the improved cholesterol esterification in plasma and macrophage cholesterol efflux to rSOF-treated plasma was due to the rSOF-mediated conversion of HDL to neo HDL. Moreover, the reduction of secretion of TNF-α and IL-6 by THP-1 cells by neo HDL was twice that of HDL. Studies in BHK cells overexpressing cholesterol transporters showed that efflux to neo HDL occurred primarily via ABCA1 not ABCG1. Thus, rSOF improves two steps in reverse cholesterol transport with a concomitant reduction in the release of macrophage markers of inflammation. We conclude that rSOF catalyzes a novel reaction that might be developed as a new therapy that prevents or reverses atherosclerosis via improved reverse cholesterol transport.


Nutrients | 2015

Alcohol: a nutrient with multiple salutary effects.

Henry J. Pownall; Corina Rosales; Baiba K. Gillard; Antonio M. Gotto

Numerous studies have shown that cardiovascular disease is lower among alcohol consumers than among nonconsumers. Many of the metabolic effects of alcohol are mediated by its terminal metabolite, acetate, which has reported insulinemic properties. There have been few rational metabolic targets that underly its cardioprotective effects until it was reported that acetate, the terminal product of alcohol metabolism, is the ligand for G-protein coupled receptor 43 (GPCR43), which is highly expressed in adipose tissue. Here, we recast much of some of the major lipid and lipoprotein effects of alcohol in the context of this newly discovered G-protein and develop a mechanistic model connecting the interaction of acetate with adipose tissue-GPCR43 with these effects. According to our model, ingestions of acetate could replace alcohol as a means of improving plasma lipid risk factors, improving glucose disposal, and reducing cardiovascular disease. Future studies should include biochemical, cell, animal, and human tests of acetate on energy metabolism.


Journal of Biological Chemistry | 2017

Scavenger receptor B1 (SR-B1) profoundly excludes high density lipoprotein (HDL) apolipoprotein AII as it nibbles HDL-cholesteryl ester

Baiba K. Gillard; G. Randall Bassett; Antonio M. Gotto; Corina Rosales; Henry J. Pownall

Reverse cholesterol transport (transfer of macrophage-cholesterol in the subendothelial space of the arterial wall to the liver) is terminated by selective high density lipoprotein (HDL)-cholesteryl ester (CE) uptake, mediated by scavenger receptor class B, type 1 (SR-B1). We tested the validity of two models for this process: “gobbling,” i.e. one-step transfer of all HDL-CE to the cell and “nibbling,” multiple successive cycles of SR-B1-HDL association during which a few CEs transfer to the cell. Concurrently, we compared cellular uptake of apoAI with that of apoAII, which is more lipophilic than apoAI, using HDL-[3H]CE labeled with [125I]apoAI or [125I]apoAII. The studies were conducted in CHO-K1 and CHO-ldlA7 cells (LDLR−/−) with (CHO-SR-B1) and without SR-B1 overexpression and in human Huh7 hepatocytes. Relative to CE, both apoAI and apoAII were excluded from uptake by all cells. However, apoAII was more highly excluded from uptake (2–4×) than apoAI. To distinguish gobbling versus nibbling mechanisms, media from incubations of HDL with CHO-SR-B1 cells were analyzed by non-denaturing PAGE, size-exclusion chromatography, and the distribution of apoAI, apoAII, cholesterol, and phospholipid among HDL species as a function of incubation time. HDL size gradually decreased, i.e. nibbling, with the concurrent release of lipid-free apoAI; apoAII was retained in an HDL remnant. Our data support an SR-B1 nibbling mechanism that is similar to that of streptococcal serum opacity factor, which also selectively removes CE and releases apoAI, leaving an apoAII-rich remnant.


Biochimica et Biophysica Acta | 2016

Streptococcal serum opacity factor promotes cholesterol ester metabolism and bile acid secretion in vitro and in vivo

Baiba K. Gillard; Perla J. Rodriguez; David W. Fields; Joe L. Raya; William R. Lagor; Corina Rosales; Harry S. Courtney; Antonio M. Gotto; Henry J. Pownall

Plasma high density lipoprotein-cholesterol (HDL-C) concentrations negatively correlate with atherosclerotic cardiovascular disease. HDL is thought to have several atheroprotective functions, which are likely distinct from the epidemiological inverse relationship between HDL-C levels and risk. Specifically, strategies that reduce HDL-C while promoting reverse cholesterol transport (RCT) may have therapeutic value. The major product of the serum opacity factor (SOF) reaction versus HDL is a cholesteryl ester (CE)-rich microemulsion (CERM), which contains apo E and the CE of ~400,000 HDL particles. Huh7 hepatocytes take up CE faster when delivered as CERM than as HDL, in part via the LDL-receptor (LDLR). Here we compared the final RCT step, hepatic uptake and subsequent intracellular processing to cholesterol and bile salts for radiolabeled HDL-, CERM- and LDL-CE by Huh7 cells and in vivo in C57BL/6J mice. In Huh7 cells, uptake from LDL was greater than from CERM (2-4X) and HDL (5-10X). Halftimes for [(14)C]CE hydrolysis were 3.0±0.2, 4.4±0.6 and 5.4±0.7h respectively for HDL, CERM and LDL-CE. The fraction of sterols secreted as bile acids was ~50% by 8h for all three particles. HDL, CERM and LDL-CE metabolism in mice showed efficient plasma clearance of CERM-CE, liver uptake and metabolism, and secretion as bile acids into the gall bladder. This work supports the therapeutic potential of the SOF reaction, which diverts HDL-CE to the LDLR, thereby increasing hepatic CE uptake, and sterol disposal as bile acids.


Biochemistry | 2015

Apolipoprotein AI deficiency inhibits serum opacity factor activity against plasma high density lipoprotein via a stabilization mechanism.

Corina Rosales; Niket Patel; Baiba K. Gillard; Dedipya Yelamanchili; Yaliu Yang; Harry S. Courtney; Raul D. Santos; Antonio M. Gotto; Henry J. Pownall

The reaction of Streptococcal serum opacity factor (SOF) against plasma high-density lipoproteins (HDL) produces a large cholesteryl ester-rich microemulsion (CERM), a smaller neo HDL that is apolipoprotein (apo) AI-poor, and lipid-free apo AI. SOF is active versus both human and mouse plasma HDL. In vivo injection of SOF into mice reduces plasma cholesterol ∼40% in 3 h while forming the same products observed in vitro, but at different ratios. Previous studies supported the hypothesis that labile apo AI is required for the SOF reaction vs HDL. Here we further tested that hypothesis by studies of SOF against HDL from apo AI-null mice. When injected into apo AI-null mice, SOF reduced plasma cholesterol ∼35% in 3 h. The reaction of SOF vs apo AI-null HDL in vitro produced a CERM and neo HDL, but no lipid-free apo. Moreover, according to the rate of CERM formation, the extent and rate of the SOF reaction versus apo AI-null mouse HDL were less than that against wild-type (WT) mouse HDL. Chaotropic perturbation studies using guanidine hydrochloride showed that apo AI-null HDL was more stable than WT HDL. Human apo AI added to apo AI-null HDL was quantitatively incorporated, giving reconstituted HDL. Both SOF and guanidine hydrochloride displaced apo AI from the reconstituted HDL. These results support the conclusion that apo AI-null HDL is more stable than WT HDL because it lacks apo AI, a labile protein that is readily displaced by physicochemical and biochemical perturbations. Thus, apo AI-null HDL is less SOF-reactive than WT HDL. The properties of apo AI-null HDL can be partially restored to those of WT HDL by the spontaneous incorporation of human apo AI. It remains to be determined what other HDL functions are affected by apo AI deletion.


Current Atherosclerosis Reports | 2016

Speciated High-Density Lipoprotein Biogenesis and Functionality

Corina Rosales; W. S. Davidson; Baiba K. Gillard; Antonio M. Gotto; Henry J. Pownall

Plasma high-density lipoprotein cholesterol (HDL-C) concentration is a negative risk factor for atherosclerotic cardiovascular disease (CVD). Despite this, most attempts to raise plasma HDL-C concentrations in a cardioprotective way have failed. Recently, hypotheses about the atheroprotective effects of HDL have shifted away from quantity to quality, mostly HDL function in reverse cholesterol transport. Plasma HDL from CVD patients is a poorer acceptor of cellular cholesterol than plasma from healthy controls, independent of plasma HDL-C concentrations. The function of HDL is likely determined by two other factors, stability and composition. The kinetic instability of HDL, which varies according to subclass, is a likely determinant of its reactivity in response to many HDL-modifying activities. HDL composition is also heterogeneous and variable; all HDL particles contain apo AI but only about two-thirds contain apo AII. This occurs despite the fact that apo AI and apo AII are hepatically secreted on separate HDL that later fuse in plasma. HDL also contains traces of other proteins, some of which have not yet been associated with HDL function. One minor HDL species are those that are secreted with intact signal peptides, which enhances their binding to HDL; these HDL have special properties that are independent of cholesterol transport. Here, we review and provide a perspective about what is currently known about speciated HDL biogenesis in the context of health and disease.

Collaboration


Dive into the Corina Rosales's collaboration.

Top Co-Authors

Avatar

Henry J. Pownall

Houston Methodist Hospital

View shared research outputs
Top Co-Authors

Avatar

Baiba K. Gillard

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Harry S. Courtney

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daming Tang

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hu Yu Lin

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Urbain Tchoua

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Yaliu Yang

Houston Methodist Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge