Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Corina Vater is active.

Publication


Featured researches published by Corina Vater.


Acta Biomaterialia | 2011

Culture media for the differentiation of mesenchymal stromal cells

Corina Vater; Philip Kasten; Maik Stiehler

Mesenchymal stromal cells (MSCs) can be isolated from various tissues such as bone marrow aspirates, fat or umbilical cord blood. These cells have the ability to proliferate in vitro and differentiate into a series of mesoderm-type lineages, including osteoblasts, chondrocytes, adipocytes, myocytes and vascular cells. Due to this ability, MSCs provide an appealing source of progenitor cells which may be used in the field of tissue regeneration for both research and clinical purposes. The key factors for successful MSC proliferation and differentiation in vitro are the culture conditions. Hence, we here summarize the culture media and their compositions currently available for the differentiation of MSCs towards osteogenic, chondrogenic, adipogenic, endothelial and vascular smooth muscle phenotypes. However, optimal combination of growth factors, cytokines and serum supplements and their concentration within the media is essential for the in vitro culture and differentiation of MSCs and thereby for their application in advanced tissue engineering.


Journal of Tissue Engineering and Regenerative Medicine | 2014

Fabrication of porous scaffolds by three‐dimensional plotting of a pasty calcium phosphate bone cement under mild conditions

Anja Lode; Katrin Meissner; Yongxiang Luo; Frank Sonntag; Stefan Glorius; Berthold Nies; Corina Vater; Florian Despang; Thomas Hanke; Michael Gelinsky

The major advantage of hydroxyapatite (HA)‐forming calcium phosphate cements (CPCs) used as bone replacement materials is their setting under physiological conditions without the necessity for thermal treatment that allows the incorporation of biological factors. In the present study, we have combined the biocompatible consolidation of CPCs with the potential of rapid prototyping (RP) techniques to generate calcium phosphate‐based scaffolds with defined inner and outer morphology. We demonstrate the application of the RP technique three‐dimensional (3D) plotting for the fabrication of HA cement scaffolds. This was realized by utilizing a paste‐like CPC (P‐CPC) which is stable as a malleable paste and whose setting reaction is initiated only after contact with aqueous solutions. The P‐CPC showed good processability in the 3D plotting process and allowed the fabrication of stable 3D structures of different geometries with adequate mechanical stability and compressive strength. The cytocompatibility of the plotted P‐CPC scaffolds was demonstrated in a cell culture experiment with human mesenchymal stem cells. The mild conditions during 3D plotting and post‐processing and the realization of the whole procedure under sterile conditions make this approach highly attractive for fabrication of individualized implants with respect to patient‐specific requirements by simultaneous plotting of biological components. Copyright


Biochemical Pharmacology | 2014

Salvianolic acid B protects human endothelial progenitor cells against oxidative stress-mediated dysfunction by modulating Akt/mTOR/4EBP1, p38 MAPK/ATF2, and ERK1/2 signaling pathways.

Yubo Tang; Angela Jacobi; Corina Vater; Xuenong Zou; Maik Stiehler

The vascular endothelium is specifically sensitive to oxidative stress, and this is one of the mechanisms that causes widespread endothelial dysfunction in most cardiovascular diseases and disorders. Protection against reactive oxygen species (ROS)-mediated oxidative damage via antioxidant mechanisms is essential for tissue maintenance and shows therapeutic potential for patients suffering from cardiovascular and metabolic disorders. Salvianolic acid B (SalB), a natural bioactive component known from Traditional Chinese Medicine, has been reported to exert cellular protection in various types of cells. However, the underlying mechanisms involved are not fully understood. Here, we showed that SalB significantly promoted the migratory and tube formation abilities of human bone marrow derived-endothelial progenitor cells (BM-EPCs) in vitro, and substantially abrogated hydrogen peroxide (H2O2)-induced cell damage. SalB down-regulated Nox4 and eNOS, as well as nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase expression upon H2O2 induction that in turn prevents oxidative-induced endothelial dysfunction. Moreover, SalB suppressed the Bax/Bcl-xL ratio and caspase-3 activation after H2O2 induction. Furthermore, our results provide mechanistic evidence that activation of the mTOR/p70S6K/4EBP1 pathways is required for both SalB-mediated angiogenic and protective effects against oxidative stress-induced cell injury in BM-EPCs. Suppression of MKK3/6-p38 MAPK-ATF2 and ERK1/2 signaling pathways by SalB significantly protected BM-EPCs against cell injury caused by oxidative stress via reduction of intracellular ROS levels and apoptosis. Taken together, by providing a mechanistic insight into the modulation of redox states in BM-EPCs by SalB, we suggest that SalB has a strong potential of being a new proangiogenic and cytoprotective therapeutic agent with applications in the field of endothelial injury-mediated vascular diseases.


Stem Cells | 2015

Icariin Promotes Angiogenic Differentiation and Prevents Oxidative Stress‐Induced Autophagy in Endothelial Progenitor Cells

Yubo Tang; Angela Jacobi; Corina Vater; Lijin Zou; Xuenong Zou; Maik Stiehler

Reduced tissue levels of endothelial progenitor cells (EPCs) and functional impairment of endothelium are frequently observed in patients with diabetes and cardiovascular disease. The vascular endothelium is specifically sensitive to oxidative stress, and this is one of the mechanisms that causes widespread endothelial dysfunction in most cardiovascular diseases and disorders. Hence attention has increasingly been paid to enhance mobilization and differentiation of EPCs for therapeutic purposes. The aim of this study was to investigate whether Icariin, a natural bioactive component known from traditional Chinese Medicine, can induce angiogenic differentiation and inhibit oxidative stress‐induced cell dysfunction in bone marrow‐derived EPCs (BM‐EPCs), and, if so, through what mechanisms. We observed that treatment of BM‐EPCs with Icariin significantly promoted cell migration and capillary tube formation, substantially abrogated hydrogen peroxide (H2O2)‐induced apoptotic and autophagic programmed cell death that was linked to the reduced intracellular reactive oxygen species levels and restored mitochondrial membrane potential. Icariin downregulated endothelial nitric oxide synthase 3, as well as nicotinamide‐adenine dinucleotide phosphate‐oxidase expression upon H2O2 induction. These antiapoptotic and antiautophagic effects of Icariin are possibly mediated by restoring the loss of mammalian target of rapamycin /p70S6K/4EBP1 phosphorylation as well as attenuation of ATF2 and ERK1/2 protein levels after H2O2 treatment. In summary, favorable modulation of the angiogenesis and redox states in BM‐EPCs make Icariin a promising proangiogenic agent both enhancing vasculogenesis and protecting against endothelial dysfunction. Stem Cells 2015;33:1863–1877


British Journal of Pharmacology | 2014

Salidroside exerts angiogenic and cytoprotective effects on human bone marrow‐derived endothelial progenitor cells via Akt/mTOR/p70S6K and MAPK signalling pathways

Yubo Tang; Corina Vater; Angela Jacobi; Cornelia Liebers; Xuenong Zou; Maik Stiehler

With the increase of age, increased susceptibility to apoptosis and senescence may contribute to proliferative and functional impairment of endothelial progenitor cells (EPCs). The aim of this study was to investigate whether salidroside (SAL) can induce angiogenic differentiation and inhibit oxidative stress‐induced apoptosis in bone marrow‐derived EPCs (BM‐EPCs), and if so, through what mechanism.


Journal of Biomedical Materials Research Part A | 2010

Modifications of a calcium phosphate cement with biomolecules--influence on nanostructure, material, and biological properties.

Corina Vater; Anja Lode; Anne Bernhardt; Antje Reinstorf; Berthold Nies; Michael Gelinsky

Calcium phosphate cements (CPC), forming hydroxyapatite during the setting reaction, are characterized by good biocompatibility and osteoconductivity, however, their remodeling into native bone tissue is slow. One strategy to improve remodeling and bone regeneration is the directed modification of their nanostructure. In this study, a CPC was set in the presence of cocarboxylase, glucuronic acid, tartaric acid, α-glucose-1-phosphate, L-arginine, L-aspartic acid, and L-lysine, respectively, with the aim to influence formation and growth of hydroxyapatite crystals through the functional groups of these biomolecules. Except for glucuronic acid, all these modifications resulted in the formation of smaller and more agglomerated hydroxyapatite particles which had a positive impact on the biological performance indicated by first experiments with the human osteoblast cell line hFOB 1.19. Moreover, adhesion, proliferation, and osteogenic differentiation of human bone marrow-derived mesenchymal stem cells (hBMSC) as well as binding of the growth factors BMP-2 and VEGF was investigated on CPC modified with cocarboxylase, arginine, and aspartic acid. Initial adhesion of hBMSC was improved on these three modifications and proliferation was enhanced on CPC modified with cocarboxylase and arginine whereas osteogenic differentiation remained unaffected. Modification of the CPC with arginine and aspartic acid, but not with cocarboxylase, led to a higher BMP-2 binding.


Journal of Biomedical Materials Research Part A | 2009

Influence of different modifications of a calcium phosphate bone cement on adhesion, proliferation, and osteogenic differentiation of human bone marrow stromal cells

Corina Vater; Anja Lode; Anne Bernhardt; Antje Reinstorf; Christiane Heinemann; Michael Gelinsky

Collagen and noncollagenous proteins of the extracellular bone matrix are able to stimulate bone cell activities and bone healing. The modification of calcium phosphate bone cements used as temporary bone replacement materials with these proteins seems to be a promising approach to accelerate new bone formation. In this study, we investigated adhesion, proliferation, and osteogenic differentiation of human bone marrow stromal cells (hBMSC) on Biocement D/collagen composites which have been modified with osteocalcin and O-phospho-L-serine. Modification with osteocalcin was carried out by its addition to the cement precursor before setting as well as by functionalization of the cement samples after setting and sterilization. hBMSC were cultured on these samples for 28 days with and without osteogenic supplements. We found a positive impact especially of the phosphoserine-modifications but also of both osteocalcin-modifications on differentiation of hBMSC indicated by higher expression of the osteoblastic markers matrix metalloproteinase-13 and bone sialo protein II. For hBMSC cultured on phosphoserine-containing composites, an increased proliferation has been observed. However, in case of the osteocalcin-modified samples, only osteocalcin adsorbed after setting and sterilization of the cement samples was able to promote initial adhesion and proliferation of hBMSC. The addition of osteocalcin before setting results in a finer microstructure but the biological activity of osteocalcin might be impaired due to the sterilization process. Thus, our data indicate that the initial adhesion and proliferation of hBMSC is enhanced rather by the biological activity of osteocalcin than by the finer microstructure.


Journal of Biomedical Materials Research Part A | 2016

The effect of SDF-1α on low dose BMP-2 mediated bone regeneration by release from heparinized mineralized collagen type I matrix scaffolds in a murine critical size bone defect model.

Stefan Zwingenberger; Robert Langanke; Corina Vater; Geoffrey Lee; Eik Niederlohmann; Markus Sensenschmidt; Angela Jacobi; Ricardo Bernhardt; Michael H. Muders; Stefan Rammelt; Sven Knaack; Michael Gelinsky; Klaus-Peter Günther; Stuart B. Goodman; Maik Stiehler

The treatment of critical size bone defects represents a challenge. The growth factor bone morphogenetic protein 2 (BMP-2) is clinically established but has potentially adverse effects when used at high doses. The aim of this study was to evaluate if stromal derived factor-1 alpha (SDF-1α) and BMP-2 released from heparinized mineralized collagen type I matrix (MCM) scaffolds have a cumulative effect on bone regeneration. MCM scaffolds were functionalized with heparin, loaded with BMP-2 and/or SDF-1α and implanted into a murine critical size femoral bone defect (control group, low dose BMP-2 group, low dose BMP-2 + SDF-1α group, and high dose BMP-2 group). After 6 weeks, both the low dose BMP-2 + SDF-1α group (5.8 ± 0.6 mm³, p = 0.0479) and the high dose BMP-2 group (6.5 ± 0.7 mm³, p = 0.008) had a significantly increased regenerated bone volume compared to the control group (4.2 ± 0.5 mm³). There was a higher healing score in the low dose BMP-2 + SDF-1α group (median grade 8; Q1-Q3 7-9; p = 0.0357) than in the low dose BMP-2 group (7; Q1-Q3 5-9) histologically. This study showed that release of BMP-2 and SDF-1α from heparinized MCM scaffolds allows for the reduction of the applied BMP-2 concentration since SDF-1α seems to enhance the osteoinductive potential of BMP-2.


Stem Cell Research | 2016

In vitro characterization of bone marrow stromal cells from osteoarthritic donors

Maik Stiehler; Juliane Rauh; Cody Bünger; Angela Jacobi; Corina Vater; Theresa Schildberg; Cornelia Liebers; Klaus-Peter Günther; Henriette Bretschneider

BMSCs, also known as bone marrow-derived mesenchymal stem cells, provide an excellent source of progenitor cells for regenerative therapy. To assess whether osteoarthritis (OA) affects the regenerative potential of BMSCs we compared the proliferation and differentiation potential as well as the surface marker expression profile of OA- versus control BMSCs. BMSCs were isolated from bone marrow aspirates of n=14 patients with advanced-stage idiopathic hip OA (67±6years) and n=15 healthy individuals (61±4years). Proliferation was quantified by total DNA content and colony-forming-units of fibroblastsmax (CFU-F) assay. Differentiation assays included immunohistology, cell-specific alkaline phosphatase (ALP) activity, and osteogenic, chondrogenic as well as adipogenic marker gene qRT-PCR. Expression of BMSC-associated surface markers was analyzed using flow cytometry. No significant intergroup differences were observed concerning the proliferation potential, cell-specific ALP activity as well as adipogenic and osteogenic differentiation marker gene expressions. Interestingly, SOX9 gene expression levels were significantly increased in OA-BMSCs after 14days of chondrogenic stimulation (p<0.01). The surface markers CD73, CD90 and STRO-1 were elevated in relation to CD14, CD34 and CD45 in both groups (p<0.0001). Notably, OA-BMSCs showed significantly increased CD90 (p<0.01) and decreased CD166 (p<0.001) levels. Overall, the in vitro characteristics of BMSCs are not markedly influenced by OA. However, increased SOX9 and CD90 as well as reduced CD166 expression levels in OA-BMSCs warrant further investigation. These data will help to further understand the role of BMSC in OA and facilitate the application of autologous cell-based strategies for musculoskeletal tissue regeneration in OA patients.


Journal of Biomedical Materials Research Part A | 2013

Stem cell attraction via SDF-1α expressing fat tissue grafts.

Stefan Zwingenberger; Zhenyu Yao; Angela Jacobi; Corina Vater; Roberto D. Valladares; Chenguang Li; Christophe Nich; Allison J. Rao; Jane E. Christman; Joseph K. Antonios; Emmanuel Gibon; Axel Schambach; Tobias Mätzig; Klaus-Peter Günther; Stuart B. Goodman; Maik Stiehler

Mesenchymal stromal cell (MSCs) are key cellular components for site-specific tissue regeneration. The chemokine stromal derived factor 1 alpha (SDF-1α) is known to attract stem cells via the C-X-C chemokine receptor-4 (CXCR4) receptor. The aim of the study was to develop a model for stem cell attraction using SDF-1α overexpressing fat tissue grafts. Murine MSCs were lentiviral transduced to express the genes for enhanced green fluorescent protein, firefly luciferace, and human CXCR4 (hCXCR4). Murine fat tissue was adenoviral transduced to express SDF-1α and red fluorescent protein transgenes. MSCs were cultured on transwells with SDF-1α containing supernatants from transduced fat tissue. The numbers of migrated MSCs in four groups (with hCXCR4 positive (+) or hCXCR4 negative (-) MSCs with or without SDF-1α containing supernatant) were investigated. After 36 h of culture, 9025 ± 925 cells migrated through the membrane of the transwells in group 1 (CXCR4+/SDF-1α+), 4817 ± 940 cells in group 2 (CXCR4-/SDF-1α+), 2050 ± 766 cells in group 3 (CXCR4+/SDF-1α-), and 2108 ± 426 cells in group 4 (CXCR4-/SDF-1α-). Both, the presence of SDF-1α and the expression of hCXCR4 significantly increased the migration rates (p < 0.0001). MSCs overexpressing the CXCR4 receptor by lentiviral transduction are highly attracted by medium from SDF-1α expressing fat tissue in vitro. Thus, SDF-1α activated tissue grafts may be a strategy to enhance site-specific musculoskeletal tissue regeneration.

Collaboration


Dive into the Corina Vater's collaboration.

Top Co-Authors

Avatar

Maik Stiehler

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar

Angela Jacobi

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar

Michael Gelinsky

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar

Anja Lode

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar

Klaus-Peter Günther

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cornelia Liebers

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar

Xuenong Zou

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Yubo Tang

Sun Yat-sen University

View shared research outputs
Researchain Logo
Decentralizing Knowledge