Corinna Lau
University of Tromsø
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Corinna Lau.
Immunobiology | 2015
Randi Fykse Hallstensen; Grethe Bergseth; Stian Foss; Steinar Jæger; Tobias Gedde-Dahl; Jan Holt; Dorte Christiansen; Corinna Lau; Ole-Lars Brekke; Elina Armstrong; Vedran Stefanovic; Jan Terje Andersen; Inger Sandlie; Tom Eirik Mollnes
Eculizumab is a humanized IgG2/4 chimeric anti-complement C5 antibody used to treat patients with paroxysmal nocturnal hemoglobinuria (PNH) or atypical hemolytic uremic syndrome. The aim of this study was to evaluate whether or not the complement activity in newborns from pregnant women who receive eculizumab is impaired. A novel eculizumab-C5 complex (E-C5) specific assay was developed and revealed that two newborns carried only 6-7% of the E-C5 detected in their eculizumab-treated PNH mothers. Serum from the pregnant women completely lacked terminal complement pathway activity, whereas the complement activity in the serum of the newborns was completely normal. Data from the pregnant women and their newborns were compared with that of healthy age-matched female controls and healthy newborns, as well as a non-treated pregnant woman with PNH and her newborn. These all showed normal complement activity without detectable E-C5 complexes. Furthermore, absence of eculizumab or E-C5 in the newborn could not be explained by lack of eculizumab binding to the neonatal Fc receptor (FcRn), as eculizumab bound strongly to the receptor in vitro. In conclusion, despite binding to FcRn neither eculizumab nor E-C5 accumulates in fetal plasma, and eculizumab treatment during pregnancy does not impair the complement function in the newborn.
Journal of Medicinal Chemistry | 2011
Sherry A. Chavez; Alexander J. Martinko; Corinna Lau; Michael N. Pham; Kui Cheng; Douglas E. Bevan; Tom Eirik Mollnes; Hang Yin
Toll-like receptor 4 (TLR4) induced proinflammatory signaling has been directly implicated in severe sepsis and represents an attractive therapeutic target. Herein, we report our investigations into the structure-activity relationship and preliminary drug metabolism/pharmacokinetics study of β-amino alcohol derivatives that inhibit the TLR4 signaling pathway. Lead compounds were identified from in vitro cellular examination with micromolar potency for their inhibitory effects on TLR4 signaling and subsequently assessed for their ability to suppress the TLR4-induced inflammatory response in an ex vivo whole blood model. In addition, the toxicology, specificity, solubility, brain-blood barrier permeability, and drug metabolism of several compounds were evaluated. Although further optimizations are needed, our findings lay the groundwork for the future drug development of this class of small molecule agents for the treatment of severe sepsis.
Journal of Immunology | 2013
Corinna Lau; Kristin Støen Gunnarsen; Lene Støkken Høydahl; Jan Terje Andersen; Gøril Berntzen; Anne Pharo; Julie Katrine Lindstad; Judith Krey Ludviksen; Ole Lars Brekke; Andreas Barratt-Due; Erik Waage Nielsen; C.R. Stokes; Terje Espevik; Inger Sandlie; Tom Eirik Mollnes
CD14 is a key recognition molecule of innate immune responses, interacting with several TLRs. TLR signaling cross-talks extensively with the complement system, and combined CD14 and complement inhibition has been proved effective in attenuating inflammatory responses. Pig models of human diseases have emerged as valuable tools to study therapeutic intervention, but suitable neutralizing Abs are rare. Undesired Fc-mediated functions, such as platelet activation and IL-8 release induced by the porcine CD14-specific clone Mil2, limit further studies. Therefore, an inert human IgG2/IgG4 hybrid C region was chosen for an rMil2. As revealed in ex vivo and in vivo pig experiments, rMil2 inhibited the CD14-mediated proinflammatory cytokine response similar to the original clone, but lacked the undesired Fc-effects, and inflammation was attenuated further by simultaneous complement inhibition. Moreover, rMil2 bound porcine FcRn, a regulator of t1/2 and biodistribution. Thus, rMil2, particularly combined with complement inhibitors, should be well suited for in vivo studies using porcine models of diseases, such as sepsis and ischemia-reperfusion injury. Similarly, the recombinant anti-human CD14 IgG2/4 Ab, r18D11, was generated with greatly reduced Fc-mediated effects and preserved inhibitory function ex vivo. Such Abs might be drug candidates for the treatment of innate immunity-mediated human diseases.
PLOS ONE | 2015
Corinna Lau; Ståle Nygård; Hilde Fure; Ole Kristoffer Olstad; Marit Holden; Knut Tore Lappegård; Ole Lars Brekke; Terje Espevik; Eivind Hovig; Tom Eirik Mollnes
Systemic inflammation like in sepsis is still lacking specific diagnostic markers and effective therapeutics. The first line of defense against intruding pathogens and endogenous damage signals is pattern recognition by e.g., complement and Toll-like receptors (TLR). Combined inhibition of a key complement component (C3 and C5) and TLR-co-receptor CD14 has been shown to attenuate certain systemic inflammatory responses. Using DNA microarray and gene annotation analyses, we aimed to decipher the effect of combined inhibition of C3 and CD14 on the transcriptional response to bacterial challenge in human whole blood. Importantly, combined inhibition reversed the transcriptional changes of 70% of the 2335 genes which significantly responded to heat-inactivated Escherichia coli by on average 80%. Single inhibition was less efficient (p<0.001) but revealed a suppressive effect of C3 on 21% of the responding genes which was partially counteracted by CD14. Furthermore, CD14 dependency of the Escherichia coli-induced response was increased in C5-deficient compared to C5-sufficient blood. The observed crucial distinct and synergistic roles for complement and CD14 on the transcriptional level correspond to their broad impact on the inflammatory response in human blood, and their combined inhibition may become inevitable in the early treatment of acute systemic inflammation.
Clinical and Experimental Immunology | 2015
Kjetil Egge; Andreas Barratt-Due; Stig Nymo; Julie Katrine Lindstad; Anne Pharo; Corinna Lau; Terje Espevik; Ebbe Billmann Thorgersen; Tom Eirik Mollnes
Combined inhibition of complement and CD14 is known to attenuate bacterial‐induced inflammation, but the dependency of the bacterial load on this effect is unknown. Thus, we investigated whether the effect of such combined inhibition on Escherichia coli‐ and Staphylococcus aureus‐induced inflammation was preserved during increasing bacterial concentrations. Human whole blood was preincubated with anti‐CD14, eculizumab (C5‐inhibitor) or compstatin (C3‐inhibitor), or combinations thereof. Then heat‐inactivated bacteria were added at final concentrations of 5 × 104−1 × 108/ml (E. coli) or 5 × 107−4 × 108/ml (S. aureus). Inflammatory markers were measured using enzyme‐linked immunosorbent assay (ELISA), multiplex technology and flow cytometry. Combined inhibition of complement and CD14 significantly (P < 0.05) reduced E. coli‐induced interleukin (IL)‐6 by 40–92% at all bacterial concentrations. IL‐1β, IL‐8 and macrophage inflammatory protein (MIP)‐1α were significantly (P < 0.05) inhibited by 53–100%, and the effect was lost only at the highest bacterial concentration. Tumour necrosis factor (TNF) and MIP‐1β were significantly (P < 0.05) reduced by 80–97% at the lowest bacterial concentration. Monocyte and granulocyte CD11b were significantly (P < 0.05) reduced by 63–91% at all bacterial doses. Lactoferrin was significantly (P < 0.05) attenuated to the level of background activity at the lowest bacterial concentration. Similar effects were observed for S. aureus, but the attenuation was, in general, less pronounced. Compared to E. coli, much higher concentrations of S. aureus were required to induce the same cytokine responses. This study demonstrates generally preserved effects of combined complement and CD14 inhibition on Gram‐negative and Gram‐positive bacterial‐induced inflammation during escalating bacterial load. The implications of these findings for future therapy of sepsis are discussed.
Journal of Immunology | 2016
Stig Nymo; Alice Gustavsen; Per H. Nilsson; Corinna Lau; Terje Espevik; Tom Eirik Mollnes
Endothelial cells (EC) play a central role in inflammation. E-selectin and ICAM-1 expression are essential for leukocyte recruitment and are good markers of EC activation. Most studies of EC activation are done in vitro using isolated mediators. The aim of the present study was to examine the relative importance of pattern recognition systems and downstream mediators in bacteria-induced EC activation in a physiological relevant human model, using EC incubated with whole blood. HUVEC were incubated with human whole blood. Escherichia coli– and Staphylococcus aureus–induced EC activation was measured by E-selectin and ICAM-1 expression using flow cytometry. The mAb 18D11 was used to neutralize CD14, and the lipid A analog eritoran was used to block TLR4/MD2. C5 cleavage was inhibited using eculizumab, and C5aR1 was blocked by an antagonist. Infliximab and canakinumab were used to neutralize TNF and IL-1β. The EC were minimally activated when bacteria were incubated in serum, whereas a substantial EC activation was seen when the bacteria were incubated in whole blood. E. coli–induced activation was largely CD14-dependent, whereas S. aureus mainly caused a C5aR1-mediated response. Combined CD14 and C5 inhibition reduced E-selectin and ICAM-1 expression by 96 and 98% for E. coli and by 70 and 75% for S. aureus. Finally, the EC activation by both bacteria was completely abolished by combined inhibition of TNF and IL-1β. E. coli and S. aureus activated EC in a CD14- and C5-dependent manner with subsequent leukocyte secretion of TNF and IL-1β mediating the effect.
The Journal of Infectious Diseases | 2016
Alice Gustavsen; Stig Nymo; Anne Landsem; Dorte Christiansen; Liv Ryan; Harald Husebye; Corinna Lau; Søren E. Pischke; John D. Lambris; Terje Espevik; Tom Eirik Mollnes
Background. Single inhibition of the Toll-like receptor 4 (TLR4)–MD2 complex failed in treatment of sepsis. CD14 is a coreceptor for several TLRs, including TLR4 and TLR2. The aim of this study was to investigate the effect of single TLR4-MD2 inhibition by using eritoran, compared with the effect of CD14 inhibition alone and combined with the C3 complement inhibitor compstatin (Cp40), on the bacteria-induced inflammatory response in human whole blood. Methods. Cytokines were measured by multiplex technology, and leukocyte activation markers CD11b and CD35 were measured by flow cytometry. Results. Lipopolysaccharide (LPS)–induced inflammatory markers were efficiently abolished by both anti-CD14 and eritoran. Anti-CD14 was significantly more effective than eritoran in inhibiting LPS-binding to HEK-293E cells transfected with CD14 and Escherichia coli–induced upregulation of monocyte activation markers (P < .01). Combining Cp40 with anti-CD14 was significantly more effective than combining Cp40 with eritoran in reducing E. coli–induced interleukin 6 (P < .05) and monocyte activation markers induced by both E. coli (P < .001) and Staphylococcus aureus (P < .01). Combining CP40 with anti-CD14 was more efficient than eritoran alone for 18 of 20 bacteria-induced inflammatory responses (mean P < .0001). Conclusions. Whole bacteria–induced inflammation was inhibited more efficiently by anti-CD14 than by eritoran, particularly when combined with complement inhibition. Combined CD14 and complement inhibition may prove a promising treatment strategy for bacterial sepsis.
Genomics data | 2015
Corinna Lau; Ole Kristoffer Olstad; Marit Holden; Ståle Nygård; Hilde Fure; Knut Tore Lappegård; Ole Lars Brekke; Terje Espevik; Eivind Hovig; Tom Eirik Mollnes
Non-sterile pathogen-induced sepsis and sterile inflammation like in trauma or ischemia–reperfusion injury may both coincide with the life threatening systemic inflammatory response syndrome and multi-organ failure. Consequently, there is an urgent need for specific biomarkers in order to distinguish sepsis from sterile conditions. The overall aim of this study was to uncover putative sepsis biomarkers and biomarker pathways, as well as to test the efficacy of combined inhibition of innate immunity key players complement and Toll-like receptor co-receptor CD14 as a possible therapeutic regimen for sepsis. We performed whole blood gene expression analyses using microarray in order to profile Gram-negative bacteria-induced inflammatory responses in an ex vivo human whole blood model. The experiments were performed in the presence or absence of inhibitors of complement proteins (C3 and CD88 (C5a receptor 1)) and CD14, alone or in combination. In addition, we used blood from a C5-deficient donor. Anti-coagulated whole blood was challenged with heat-inactivated Escherichia coli for 2 h, total RNA was isolated and microarray analyses were performed on the Affymetrix GeneChip Gene 1.0 ST Array platform. The initial experiments were performed in duplicates using blood from two healthy donors. C5-deficiency is very rare, and only one donor could be recruited. In order to increase statistical power, a technical replicate of the C5-deficient samples was run. Subsequently, log2-transformed intensities were processed by robust multichip analysis and filtered using a threshold of four. In total, 73 microarray chips were run and analyzed. The normalized and filtered raw data have been deposited in NCBIs Gene Expression Omnibus (GEO) and are accessible with GEO Series accession number GSE55537. Linear models for microarray data were applied to estimate fold changes between data sets and the respective multiple testing adjusted p-values (FDR q-values). The interpretation of the data has been published by Lau et al. in an open access article entitled “CD14 and Complement Crosstalk and Largely Mediate the Transcriptional Response to Escherichia coli in Human Whole Blood as revealed by DNA Microarray” (Lau et al., 2015).
Neonatology | 2018
Anub Mathew Thomas; Camilla Schjalm; Per H. Nilsson; Paal H H Lindenskov; Runa Rørtveit; Rønnaug Solberg; Ola Didrik Saugstad; Magnus M. Berglund; Patrik Strömberg; Corinna Lau; Terje Espevik; Johan Høgset Jansen; Albert Castellheim; Tom Eirik Mollnes; Andreas Barratt-Due
Background: Meconium aspiration syndrome (MAS) is a severe lung condition affecting newborns and it can lead to a systemic inflammatory response. We previously documented complement activation and cytokine release in a piglet MAS model. Additionally, we showed ex vivo that meconium-induced inflammation was dependent on complement and Toll-like receptors. Objectives: To assess the efficacy of the combined inhibition of complement (C5) and CD14 on systemic inflammation induced in a forceful piglet MAS model. Methods: Thirty piglets were randomly allocated to a treatment group receiving the C5-inhibitor SOBI002 and anti-CD14 (n = 15) and a nontreated control group (n = 15). MAS was induced by intratracheal meconium instillation, and the piglets were observed for 5 h. Complement, cytokines, and myeloperoxidase (MPO) were measured by ELISA. Results: SOBI002 ablated C5 activity and the formation of the terminal complement complex in vivo. The combined inhibition attenuated the inflammasome cytokines IL-1β and IL-6 by 60 (p = 0.029) and 44% (p = 0.01), respectively, and also MPO activity in the bronchoalveolar fluid by 42% (p = 0.017). Ex vivo experiments in human blood revealed that the combined regimen attenuated meconium-induced MPO release by 64% (p = 0.008), but there was only a negligible effect with single inhibition, indicating a synergic cross-talk between the key molecules C5 and CD14. Conclusion: Combined inhibition of C5 and CD14 attenuates meconium-induced inflammation in vivo and this could become a future therapeutic regimen for MAS.
Critical Care | 2015
Espen Waage Skjeflo; Caroline Sagatun; Knut Dybwik; Sturla Aam; Sven Haakon Urving; Miles A. Nunn; Hilde Fure; Corinna Lau; Ole Lars Brekke; Markus Huber-Lang; Terje Espevik; Andreas Barratt-Due; Erik Waage Nielsen; Tom Eirik Mollnes