Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Corinna Trebst is active.

Publication


Featured researches published by Corinna Trebst.


Journal of Neurology | 2014

Update on the diagnosis and treatment of neuromyelitis optica: recommendations of the Neuromyelitis Optica Study Group (NEMOS).

Corinna Trebst; Sven Jarius; Achim Berthele; Friedemann Paul; Sven Schippling; Brigitte Wildemann; Nadja Borisow; Ingo Kleiter; Orhan Aktas; Tania Kümpfel

Abstract Neuromyelitis optica (NMO, Devic’s syndrome), long considered a clinical variant of multiple sclerosis, is now regarded as a distinct disease entity. Major progress has been made in the diagnosis and treatment of NMO since aquaporin-4 antibodies (AQP4-Ab; also termed NMO-IgG) were first described in 2004. In this review, the Neuromyelitis Optica Study Group (NEMOS) summarizes recently obtained knowledge on NMO and highlights new developments in its diagnosis and treatment, based on current guidelines, the published literature and expert discussion at regular NEMOS meetings. Testing of AQP4-Ab is essential and is the most important test in the diagnostic work-up of suspected NMO, and helps to distinguish NMO from other autoimmune diseases. Furthermore, AQP4-Ab testing has expanded our knowledge of the clinical presentation of NMO spectrum disorders (NMOSD). In addition, imaging techniques, particularly magnetic resonance imaging of the brain and spinal cord, are obligatory in the diagnostic workup. It is important to note that brain lesions in NMO and NMOSD are not uncommon, do not rule out the diagnosis, and show characteristic patterns. Other imaging modalities such as optical coherence tomography are proposed as useful tools in the assessment of retinal damage. Therapy of NMO should be initiated early. Azathioprine and rituximab are suggested as first-line treatments, the latter being increasingly regarded as an established therapy with long-term efficacy and an acceptable safety profile in NMO patients. Other immunosuppressive drugs, such as methotrexate, mycophenolate mofetil and mitoxantrone, are recommended as second-line treatments. Promising new therapies are emerging in the form of anti-IL6 receptor, anti-complement or anti-AQP4-Ab biologicals.


Brain Research | 2009

Regional differences between grey and white matter in cuprizone induced demyelination

Viktoria Gudi; Darius Moharregh-Khiabani; Thomas Skripuletz; Paraskevi N. Koutsoudaki; Alexandra Kotsiari; Jelena Skuljec; Corinna Trebst; Martin Stangel

Cuprizone feeding is a commonly used model to study experimental de- and remyelination, with the corpus callosum being the most frequently investigated white matter tract. We have previously shown that demyelination is also extensive in the cerebral cortex in the cuprizone model. In the current study, we have performed a detailed analysis of the dynamics of demyelination in the cortex in comparison to the corpus callosum. Prominent and almost complete demyelination in the corpus callosum was observed after 4.5-5 weeks of 0.2% cuprizone feeding, whereas complete cortical demyelination was only observed after 6 weeks of cuprizone feeding. Interestingly, remyelination in the corpus callosum occurred even before the termination of cuprizone administration. Accumulation of microglia in the corpus callosum started as early as week 3 reaching its maximum at week 4.5 and was still significantly elevated at week 6 of cuprizone treatment. Within the cortex only a few scattered activated microglial cells were found. Furthermore, the intensity of astrogliosis, accumulation of oligodendrocyte progenitor cells and nestin positive cells differed between the two areas investigated. The time course and dynamics of demyelination differ in the corpus callosum and in the cortex, suggesting different underlying pathomechanisms.


Gut | 2006

Monoaminergic neurotransmission is altered in hepatitis C virus infected patients with chronic fatigue and cognitive impairment

Karin Weissenborn; Jochen C Ennen; Martin Bokemeyer; Björn Ahl; Ulrich Wurster; Hans L. Tillmann; Corinna Trebst; Hartmut Hecker; Georg Berding

Background: The majority of patients with hepatitis C virus (HCV) infection suffer from disabling fatigue, cognitive dysfunction, and quality of life reduction. Meanwhile, there is increasing evidence that HCV infection can affect brain function. Recent studies have shown that fatigue and psychomotor slowing may resolve in patients with hepatitis C after treatment with ondansetron. This observation indicates alteration of serotonergic neurotransmission in HCV infected patients with chronic fatigue. Methods: Data from 20 HCV infected patients who were referred to our clinic because of disabling fatigue and cognitive decline of unknown cause were analysed retrospectively. Patients had undergone a diagnostic programme, including clinical and psychometric examination, electroencephalogram (EEG), magnetic resonance imaging of the brain, cerebrospinal fluid analysis, and I-123-beta-CIT (2β-carbomethoxy-3-β-(4-[123I]iodophenyl)tropane) single photon emission computerised tomography (SPECT) studies of serotonin and dopamine transporter binding capacity. Results: All patients had pathological results on the fatigue impact scale. Two thirds of patients showed pathological attention test results. EEG, magnetic resonance imaging, and cerebrospinal fluid analysis were normal. Pathological dopamine transporter binding was present in 12/20 (60%) patients and pathological serotonin transporter binding in 8/19 (50%) patients. Patients with normal SPECT results did not significantly differ from controls with regard to psychometric test results. Interestingly, patients with both decreased serotonin and dopamine transporter binding showed significantly impaired performance in most of the tests applied. Comorbidity that could have impaired cerebral function was excluded in all patients. Conclusion: Our findings indicate alteration of serotonergic and dopaminergic neurotransmission in HCV infected patients with chronic fatigue and cognitive impairment.


Neurobiology of Disease | 2012

Characterisation of microglia during de- and remyelination: can they create a repair promoting environment?

Elke Voß; Jelena Skuljec; Viktoria Gudi; Thomas Skripuletz; Refik Pul; Corinna Trebst; Martin Stangel

Microglia play a key role in the initiation and perpetuation of de- and remyelination because of their ability to present antigens and clear cell debris by phagocytosis. Different factors expressed or secreted by microglia seem to play an important role in regenerative processes. But it remains unclear which factors lead to a protective microglial phenotype and recent data indicate region-specific differences within the central nervous system (CNS) for both de-/remyelination and microglial response. In order to identify important factors that promote neuroprotection, we examined changes in microglial phenotypes in the cuprizone model. We undertook an extensive and detailed analysis of the expression of surface markers as well as cytokines, growth factors, and the phagocytosis activity of microglia. We found a pronounced increase of phagocytosis activity of microglia during demyelination associated with an upregulation of phagocytic receptors, from which TREM-2b was the most prominent. The expression of MHC II was only increased at the peak of demyelination but costimulatory molecules showed no significant changes. Interestingly, the proinflammatory cytokine TNF-α was upregulated while the anti-inflammatory cytokines IL-10 and TGF-ß remained unchanged. The growth factors IFG-1 and FGF-2, which were both suggested to promote remyelination, were increased during demyelination. Our findings characterise changes of microglial markers during de- and remyelination indicating that debris clearance mediated via TREM-2b plays a central role in the regulation of these processes. Microglial phagocytosis as well as production of TNF-α, IGF-1, and FGF-2 seems to be important factors for the creation of an environment promoting regeneration.


Neuroscience Letters | 2009

Chronic toxic demyelination in the central nervous system leads to axonal damage despite remyelination.

Maren Lindner; Jantje Fokuhl; Franziska Linsmeier; Corinna Trebst; Martin Stangel

The majority of multiple sclerosis lesions fail to remyelinate after chronic demyelinating episodes resulting in neurologic disability. In the current study, chronic demyelination was investigated by using the cuprizone model, a toxic demyelination model. C57BL/6 mice were administered a 0.2% cuprizone diet up to 16 weeks to induce chronic demyelination. For comparison, another group was maintained only for 6 weeks on cuprizone to model acute demyelination. Both groups were analysed regarding the remyelination process after withdrawal of the toxin. Reexpression of myelin proteins after chronic demyelination was reduced by a factor of two as judged by LFB and myelin protein stainings compared to acute demyelination after 2 weeks on remyelination. During chronic demyelination mature oligodendrocytes (Nogo-A positive cells) were severely depleted by 90% compared to age matched controls. Nevertheless, extensive remyelination occurred after withdrawal of cuprizone and was nearly complete after 12 weeks. There was only minimal acute axonal damage as judged by APP staining, with the course of APP positive axons correlating with macrophage/microglia accumulation. Chronic axonal damage detected by SMI-32 positive staining was only seen after chronic demyelination and was still observable during the whole remyelination period. These data suggest that two pattern of axonal injury occur in the cuprizone model.


Annals of Neurology | 2016

Neuromyelitis optica: Evaluation of 871 attacks and 1,153 treatment courses.

Ingo Kleiter; Anna Gahlen; Nadja Borisow; Katrin Fischer; Klaus-Dieter Wernecke; Brigitte Wegner; Kerstin Hellwig; Florence Pache; Klemens Ruprecht; Joachim Havla; Markus Krumbholz; Tania Kümpfel; Orhan Aktas; Hans-Peter Hartung; Marius Ringelstein; Christian Geis; Christoph Kleinschnitz; Achim Berthele; Bernhard Hemmer; Klemens Angstwurm; Jan-Patrick Stellmann; Simon Schuster; Martin Stangel; Florian Lauda; Hayrettin Tumani; Christoph Mayer; Lena Zeltner; Ulf Ziemann; Ralf A. Linker; Matthias Schwab

Neuromyelitis optica (NMO) attacks often are severe, are difficult to treat, and leave residual deficits. Here, we analyzed the frequency, sequence, and efficacy of therapies used for NMO attacks.


Neuroscience Letters | 2009

Demyelination of the hippocampus is prominent in the cuprizone model

Paraskevi N. Koutsoudaki; Thomas Skripuletz; Viktoria Gudi; Darius Moharregh-Khiabani; Herbert Hildebrandt; Corinna Trebst; Martin Stangel

In multiple sclerosis demyelination not only affects the white matter, but also the grey matter of the brain. We have previously reported that in the murine cuprizone model for demyelination lesions occur in addition to the corpus callosum also in the neocortex and hippocampus. In the current study, we provide a detailed characterization of hippocampal demyelination in the cuprizone model. Male C57BL/6 mice were challenged with 0.2% cuprizone for 6 weeks. Defined structures within the hippocampus were investigated at week 0 (control), 3, 4, 4.5, 5, 5.5, and 6. Demyelination affected all hippocampal structures analyzed and was complete after 6 weeks of cuprizone treatment. Between the distinct hippocampal structures the temporal pattern of demyelination varied considerably. Furthermore, infiltration of activated microglia as well as astrogliosis was detected. In summary, cuprizone feeding provides a useful model for studying demyelination processes in the mouse hippocampus.


Cellular Immunology | 2011

CCL5 induces a pro-inflammatory profile in microglia in vitro.

Jelena Skuljec; Hui Sun; Refik Pul; Karelle Bénardais; Daniela Ragancokova; Darius Moharregh-Khiabani; Alexandra Kotsiari; Corinna Trebst; Martin Stangel

The chemokine receptors CCR1, CCR2, CCR3, CCR5, and CXCR2 have been found to be expressed on microglia in many neurodegenerative diseases, such as multiple sclerosis and Alzheimers disease. There is emerging evidence that chemokines, besides chemoattraction, might directly modulate reactive profiles of microglia. To address this hypothesis we have investigated the effects of CCL2, CCL3, CCL5, and CXCL1 on cytokine and growth factor production, NO synthesis, and phagocytosis in non-stimulated and lipopolysaccharide-stimulated primary rat microglia. The respective receptors CCR1, CCR5, and CXCR2 were shown to be functionally expressed on microglia. All tested chemokines stimulated chemotaxis whereas only CCL5 increased NO secretion and attenuated IL-10 as well as IGF-1 production in activated microglia. Based on these findings we propose that besides its chemoattractant function CCL5 has a modulatory effect on activated microglia.


Acta Neuropathologica | 2016

Neurotropic virus infections as the cause of immediate and delayed neuropathology

Martin Ludlow; Jeroen Kortekaas; Christiane Herden; Bernd Hoffmann; Dennis Tappe; Corinna Trebst; Diane E. Griffin; Hannah E. Brindle; Tom Solomon; Alan S. Brown; Debby van Riel; Katja C. Wolthers; Dasja Pajkrt; Peter Wohlsein; Byron E. E. Martina; Wolfgang Baumgärtner; Georges M. G. M. Verjans; Albert D. M. E. Osterhaus

A wide range of viruses from different virus families in different geographical areas, may cause immediate or delayed neuropathological changes and neurological manifestations in humans and animals. Infection by neurotropic viruses as well as the resulting immune response can irreversibly disrupt the complex structural and functional architecture of the central nervous system, frequently leaving the patient or affected animal with a poor or fatal prognosis. Mechanisms that govern neuropathogenesis and immunopathogenesis of viral infections are highlighted, using examples of well-studied virus infections that are associated with these alterations in different populations throughout the world. A better understanding of the molecular, epidemiological and biological characteristics of these infections and in particular of mechanisms that underlie their clinical manifestations may be expected to provide tools for the development of more effective intervention strategies and treatment regimens.


BMC Neurology | 2014

Anti-leucine rich glioma inactivated 1 protein and anti-N-methyl-D-aspartate receptor encephalitis show distinct patterns of brain glucose metabolism in 18F-fluoro-2-deoxy-d-glucose positron emission tomography.

Florian Wegner; Florian Wilke; Peter Raab; Said Ben Tayeb; Anna-Lena Boeck; Cathleen Haense; Corinna Trebst; Elke Voss; Christoph Schrader; Frank Logemann; Jörg Ahrens; Andreas Leffler; Rea Rodriguez-Raecke; Reinhard Dengler; Lilli Geworski; Frank M. Bengel; Georg Berding; Martin Stangel; Elham Nabavi

BackgroundPathogenic autoantibodies targeting the recently identified leucine rich glioma inactivated 1 protein and the subunit 1 of the N-methyl-D-aspartate receptor induce autoimmune encephalitis. A comparison of brain metabolic patterns in 18F-fluoro-2-deoxy-d-glucose positron emission tomography of anti-leucine rich glioma inactivated 1 protein and anti-N-methyl-D-aspartate receptor encephalitis patients has not been performed yet and shall be helpful in differentiating these two most common forms of autoimmune encephalitis.MethodsThe brain 18F-fluoro-2-deoxy-d-glucose uptake from whole-body positron emission tomography of six anti-N-methyl-D-aspartate receptor encephalitis patients and four patients with anti-leucine rich glioma inactivated 1 protein encephalitis admitted to Hannover Medical School between 2008 and 2012 was retrospectively analyzed and compared to matched controls.ResultsGroup analysis of anti-N-methyl-D-aspartate encephalitis patients demonstrated regionally limited hypermetabolism in frontotemporal areas contrasting an extensive hypometabolism in parietal lobes, whereas the anti-leucine rich glioma inactivated 1 protein syndrome was characterized by hypermetabolism in cerebellar, basal ganglia, occipital and precentral areas and minor frontomesial hypometabolism.ConclusionsThis retrospective 18F-fluoro-2-deoxy-d-glucose positron emission tomography study provides novel evidence for distinct brain metabolic patterns in patients with anti-leucine rich glioma inactivated 1 protein and anti-N-methyl-D-aspartate receptor encephalitis.

Collaboration


Dive into the Corinna Trebst's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Refik Pul

Hannover Medical School

View shared research outputs
Top Co-Authors

Avatar

Friedemann Paul

Humboldt University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Orhan Aktas

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge