Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Corinne Cotinot is active.

Publication


Featured researches published by Corinne Cotinot.


Nature Genetics | 2001

A 11.7-kb deletion triggers intersexuality and polledness in goats.

Eric Pailhoux; Bernard Vigier; Stéphane Chaffaux; Nathalie Servel; Sead Taourit; Jean-Pierre Furet; Marc Fellous; F. Grosclaude; Edmond Cribiu; Corinne Cotinot; D. Vaiman

Mammalian sex determination is governed by the presence of the sex determining region Y gene (SRY) on the Y chromosome. Familial cases of SRY-negative XX sex reversal are rare in humans, often hampering the discovery of new sex-determining genes. The mouse model is also insufficient to correctly apprehend the sex-determination cascade, as the human pathway is much more sensitive to gene dosage. Other species might therefore be considered in this respect. In goats, the polled intersex syndrome (PIS) mutation associates polledness and intersexuality. The sex reversal affects exclusively the XX individuals in a recessive manner, whereas the absence of horns is dominant in both sexes. The syndrome is caused by an autosomal gene located at chromosome band 1q43 (ref. 9), shown to be homologous to human chromosome band 3q23 (ref. 10). Through a positional cloning approach, we demonstrate that the mutation underlying PIS is the deletion of a critical 11.7-kb DNA element containing mainly repetitive sequences. This deletion affects the transcription of at least two genes: PISRT1, encoding a 1.5-kb mRNA devoid of open reading frame (ORF), and FOXL2, recently shown to be responsible for blepharophimosis ptosis epicanthus inversus syndrome (BPES) in humans. These two genes are located 20 and 200 kb telomeric from the deletion, respectively.


Developmental Dynamics | 2004

Isolation of Chicken Homolog of the FOXL2 Gene and Comparison of Its Expression Patterns With Those of Aromatase During Ovarian Development

Marina Govoroun; Maëlle Pannetier; Eric Pailhoux; Julie Cocquet; Jean-Pierre Brillard; Isabelle Couty; Florence Batellier; Corinne Cotinot

Mutations in the forkhead transcription factor gene FOXL2 are involved in ovarian failure, which occurs in human BPES syndrome. This syndrome presents a sexually dimorphic expression, specific to the ovary in several vertebrates. We cloned the open reading frame of chicken FOXL2 (cFoxL2) and studied cFoxL2 expression in developing gonads and during adulthood to examine the role of FOXL2 in ovarian differentiation and function in birds. The spatial and temporal dynamics of cFoxL2 and aromatase expression were analyzed in parallel by using real‐time quantitative reverse transcriptase‐polymerase chain reaction and immunohistochemistry in attempt to investigate the possible role of cFoxL2 in the regulation of aromatase. The expression patterns of cFoxL2 and aromatase transcripts were highly correlated during the sex‐differentiation period (4.7–12.7 days of incubation). Aromatase and cFoxL2 proteins were colocalized in the medullar part of female gonads on embryonic day 14. Fourteen days after hatching, cFoxL2 protein was mainly detected in granulosa cells of developing follicles. In adult ovary follicular envelopes, apart from granulosa cells, cFoxL2 transcript and protein were detected at lower levels in theca cells where aromatase was present. A high level of cFoxL2 transcription was also observed in maturing and ovulated oocytes. Our results confirm that FoxL2 is an early regulator of ovarian development in birds and may be involved in aromatase transcription regulation. Developmental Dynamics 859–870, 2004.


Molecular Human Reproduction | 2008

In utero exposure to low doses of environmental pollutants disrupts fetal ovarian development in sheep

Paul A. Fowler; Natalie J. Dorà; Helen McFerran; Maria R. Amezaga; David Miller; Richard G. Lea; Phillip Cash; Alan S. McNeilly; Neil P. Evans; Corinne Cotinot; Richard M. Sharpe; Stewart M. Rhind

Epidemiological studies of the impact of environmental chemicals on reproductive health demonstrate consequences of exposure but establishing causative links requires animal models using ‘real life’ in utero exposures. We aimed to determine whether prolonged, low-dose, exposure of pregnant sheep to a mixture of environmental chemicals affects fetal ovarian development. Exposure of treated ewes (n = 7) to pollutants was maximized by surface application of processed sewage sludge to pasture. Control ewes (n = 10) were reared on pasture treated with inorganic fertilizer. Ovaries and blood were collected from fetuses (n = 15 control and n = 8 treated) on Day 110 of gestation for investigation of fetal endocrinology, ovarian follicle/oocyte numbers and ovarian proteome. Treated fetuses were 14% lighter than controls but fetal ovary weights were unchanged. Prolactin (48% lower) was the only measured hormone significantly affected by treatment. Treatment reduced numbers of growth differentiation factor (GDF9) and induced myeloid leukaemia cell differentiation protein (MCL1) positive oocytes by 25–26% and increased pro-apoptotic BAX by 65% and 42% of protein spots in the treated ovarian proteome were differently expressed compared with controls. Nineteen spots were identified and included proteins involved in gene expression/transcription, protein synthesis, phosphorylation and receptor activity. Fetal exposure to environmental chemicals, via the mother, significantly perturbs fetal ovarian development. If such effects are replicated in humans, premature menopause could be an outcome.


Developmental Dynamics | 2002

Ontogenesis of female-to-male sex-reversal in XX polled goats.

Eric Pailhoux; Bernard Vigier; D. Vaiman; Nathalie Servel; Stéphane Chaffaux; Edmond Cribiu; Corinne Cotinot

The association of polledness and intersexuality in domestic goats (PIS mutation) made them a practical genetic model for studying mammalian female‐to‐male sex reversal. In this study, gonads from XX sex‐reversed goats (PIS‐/‐) were thoroughly characterized at the molecular and histologic level from the first steps of gonadal differentiation (36 days post coitum [dpc]) to birth. The first histologic signs of gonadal sex reversal were detectable between 36 and 40 dpc (4–5 days later than the XY male) and were mainly characterized by the reduction of the ovarian cortex and the organization of seminiferous cords. As early as 36 dpc, aromatase (CYP19) gene expression was decreased in XX (PIS‐/‐) gonads, whereas genes normally up‐regulated in males, such as SOX9 and AMH, showed an increased expression level from 40 dpc. Thereafter, steroidogenic cell precursors were affected, and at 56 dpc, WNT4 and 3β‐HSD were expressed in a male‐specific manner in sex‐reversed gonads. Another noticeable feature was a progressive disappearance of germ cells, clearly visible in testicular cords around 70 dpc where 50–75% of germ cells were absent in XX (PIS‐/‐) gonads. These observations indicated that the causal mutation of PIS acts very early in the sex‐determining cascade and affects primarily the supporting cells of the gonad.


European Journal of Endocrinology | 2008

Genetic investigation of four meiotic genes in women with premature ovarian failure

Beatrice Mandon-Pepin; Philippe Touraine; Frédérique Kuttenn; Céline Derbois; A. Rouxel; Fumihiko Matsuda; Alain Nicolas; Corinne Cotinot; Marc Fellous

OBJECTIVE The goal of this study was to determine whether mutations of meiotic genes, such as disrupted meiotic cDNA (DMC1), MutS homolog (MSH4), MSH5, and S. cerevisiae homolog (SPO11), were associated with premature ovarian failure (POF). DESIGN Case-control study. METHODS Blood sampling, karyotype, hormonal dosage, ultrasound, and ovarian biopsy were carried out on most patients. However, the main outcome measure was the sequencing of genomic DNA from peripheral blood samples of 41 women with POF and 36 fertile women (controls). RESULTS A single heterozygous missense mutation, substitution of a cytosine residue with thymidine in exon 2 of MSH5, was found in two Caucasian women in whom POF developed at 18 and 36 years of age. This mutation resulted in replacement of a non-polar amino acid (proline) with a polar amino acid (serine) at position 29 (P29S). Neither 36 control women nor 39 other patients with POF possessed this genetic perturbation. Another POF patient of African origin showed a homozygous nucleotide change in the tenth of DMC1 gene that led to an alteration of the amino acid composition of the protein (M200V). CONCLUSIONS The symptoms of infertility observed in the DMC1 homozygote mutation carrier and in both patients with a heterozygous substitution in exon 2 of the MSH5 gene provide indirect evidence of the role of genes involved in meiotic recombination in the regulation of ovarian function. MSH5 and DMC1 mutations may be one explanation for POF, albeit uncommon.


Molecular and Cellular Endocrinology | 2001

Testis determination in mammals: more questions than answers.

Reiner Veitia; Laura Salas-Cortés; Chris Ottolenghi; Eric Pailhoux; Corinne Cotinot; Marc Fellous

In humans, testis development depends on a regulated genetic hierarchy initiated by the Y-linked SRY gene. Failure of testicular determination results in the condition termed 46,XY gonadal dysgenesis (GD). Several components of the testis determining pathway have recently been identified though it has been difficult to articulate a cascade with the known elements of the system. It seems, however, that early gonadal development is the result of a network of interactions instead of the outcome of a linear cascade. Accumulating evidence shows that testis formation in man is sensitive to gene dosage. Haploinsufficiency of SF1, WT1 and SOX9 is responsible for 46,XY gonadal dysgenesis. Besides, data on SRY is consistent with possible dosage anomalies in certain cases of male to female sex reversal. 46,XY GD due to monosomy of distal 9p and 10q might also be associated with an insufficient gene dosage effect. Duplications of the locus DSS can lead to a failure of testicular development and a duplication of the region containing SOX9 has been implicated in XX sex reversal. Transgenic studies in mouse have shown, however, that this mammal is less sensitive to gene dosage than man. Here, we will try to put in place the known pieces of the jigsaw puzzle that is sex determination in mammals, as far as current knowledge obtained from man and animal models allows. We are certain that from this attempt more questions than answers will arise.


Current Biology | 2014

FOXL2 is a female sex-determining gene in the goat.

Laurent Boulanger; Maëlle Pannetier; Laurence Gall; Aurélie Allais-Bonnet; Maëva Elzaiat; Daniel Le Bourhis; Nathalie Daniel; Christophe Richard; Corinne Cotinot; Norbert B. Ghyselinck; Eric Pailhoux

The origin of sex reversal in XX goats homozygous for the polled intersex syndrome (PIS) mutation was unclear because of the complexity of the mutation that affects the transcription of both FOXL2 and several long noncoding RNAs (lncRNAs). Accumulating evidence suggested that FOXL2 could be the sole gene of the PIS locus responsible for XX sex reversal, the lncRNAs being involved in transcriptional regulation of FOXL2. In this study, using zinc-finger nuclease-directed mutagenesis, we generated several fetuses, of which one XX individual bears biallelic mutations of FOXL2. Our analysis demonstrates that FOXL2 loss of function dissociated from loss of lncRNA expression is sufficient to cause an XX female-to-male sex reversal in the goat model and, as in the mouse model, an agenesis of eyelids. Both developmental defects were reproduced in two newborn animals cloned from the XX FOXL2(-/-) fibroblasts. These results therefore identify FOXL2 as a bona fide female sex-determining gene in the goat. They also highlight a stage-dependent role of FOXL2 in the ovary, different between goats and mice, being important for fetal development in the former but for postnatal maintenance in the latter.


Biology of Reproduction | 2003

Expression Profiles and Chromosomal Localization of Genes Controlling Meiosis and Follicular Development in the Sheep Ovary

Beatrice Mandon-Pepin; Anne Oustry-Vaiman; Bernard Vigier; François Piumi; Edmond Cribiu; Corinne Cotinot

Abstract In female sheep fetuses, two of the most crucial stages of ovarian development are prophase of meiosis I and follicle formation. In the present study, sheep ovaries collected on Days 25, 38, 49, 56, 67, 75, 94, and 120 of gestation, at birth, and in adulthood were tested by reverse transcription-polymerase chain reaction (RT-PCR) for the expression of 14 genes known to be involved in the ovarian differentiation in diverse organisms. The aim of this study was to determine 1) the expression pattern of six genes involved in germ cell development or meiosis (DMC1, SPO11, MSH4, MSH5, DAZL, and Boule) and five ovary-derived factors (OVOL1, SIAH2, DIAPH2, FOXL2, and FGF9), 2) the onset of gene expression for several members of the bone morphogenetic protein (BMP) pathway involved in follicular development (GDF9, BMP15, BMPR-IB), and 3) the chromosomal localization of seven of these genes in the sheep genome. The RT-PCR analysis revealed that the two germline-specific genes, DAZL and Boule, were expressed between 49 and 94 days postcoitum (dpc) with a similar pattern to typical meiosis genes (DMC1, MSH4, and MSH5), suggesting their possible participation in prophase of meiosis I. GDF9 and OVOL1 gene transcription started at 56 dpc and extended until birth, while BMP15 presented a more restricted window of expression between 94 dpc and birth, corresponding to the formation of first growing follicles. The homologous ovine genes for SPO11, DMC1, MSH5, DAZL, FGF9, DIAPH2, and SIAH2 were located on OAR 13q21–22, 3q35, 20q22, 19q13, 10q15, Xq44, and 1q41–42, respectively. In sheep, quantitative trait loci affecting female reproductive capacities are currently being detected. The ontology and precise mapping of ovarian genes will be useful to identify potential candidate genes that might underlie these effects.


Genetics Selection Evolution | 2005

Positional cloning of the PIS mutation in goats and its impact on understanding mammalian sex-differentiation

Eric Pailhoux; Bernard Vigier; Laurent Schibler; Edmond Cribiu; Corinne Cotinot; Daniel Vaiman

In goats, the PIS (polled intersex syndrome) mutation is responsible for both the absence of horns in males and females and sex-reversal affecting exclusively XX individuals. The mode of inheritance is dominant for the polled trait and recessive for sex-reversal. In XX PIS-/- mutants, the expression of testis-specific genes is observed very precociously during gonad development. Nevertheless, a delay of 4–5 days is observed in comparison with normal testis differentiation in XY males. By positional cloning, we demonstrate that the PIS mutation is an 11.7-kb regulatory-deletion affecting the expression of two genes, PISRT1 and FOXL2 which could act synergistically to promote ovarian differentiation. The transcriptional extinction of these two genes leads, very early, to testis-formation in XX homozygous PIS-/- mutants. According to their expression profiles and bibliographic data, we propose that FOXL2 may be an ovary-differentiating gene, and the non-coding RNA PISRT1, an anti-testis factor repressing SOX9, a key regulator of testis differentiation. Under this hypothesis, SRY, the testis-determining factor would inhibit these two genes in the gonads of XY males, to ensure testis differentiation.


Journal of Neuroendocrinology | 2010

Foetal Hypothalamic and Pituitary Expression of Gonadotrophin-Releasing Hormone and Galanin Systems is Disturbed by Exposure to Sewage Sludge Chemicals via Maternal Ingestion

Michelle Bellingham; Paul A. Fowler; Maria R. Amezaga; Christine Margaret Whitelaw; Stewart M. Rhind; Corinne Cotinot; Beatrice Mandon-Pepin; Richard M. Sharpe; Neil P. Evans

Animals and humans are chronically exposed to endocrine disrupting chemicals (EDCs) that are ubiquitous in the environment. There are strong circumstantial links between environmental EDC exposure and both declining human/wildlife reproductive health and the increasing incidence of reproductive system abnormalities. The verification of such links, however, is difficult and requires animal models exposed to ‘real life’, environmentally relevant concentrations/mixtures of environmental contaminants (ECs), particularly in utero, when sensitivity to EC exposure is high. The present study aimed to determine whether the foetal sheep reproductive neuroendocrine axis, particularly gondotrophin‐releasing hormone (GnRH) and galaninergic systems, were affected by maternal exposure to a complex mixture of chemicals, applied to pasture, in the form of sewage sludge. Sewage sludge contains high concentrations of a spectrum of EDCs and other pollutants, relative to environmental concentrations, but is frequently recycled to land as a fertiliser. We found that foetuses exposed to the EDC mixture in utero through their mothers had lower GnRH mRNA expression in the hypothalamus and lower GnRH receptor (GnRHR) and galanin receptor (GALR) mRNA expression in the hypothalamus and pituitary gland. Strikingly, this, treatment had no significant effect on maternal GnRH or GnRHR mRNA expression, although GALR mRNA expression within the maternal hypothalamus and pituitary gland was reduced. The present study clearly demonstrates that the developing foetal neuroendocrine axis is sensitive to real‐world mixtures of environmental chemicals. Given the important role of GnRH and GnRHR in the regulation of reproductive function, its known role programming role in utero, and the role of galanin in the regulation of many physiological/neuroendocrine systems, in utero changes in the activity of these systems are likely to have long‐term consequences in adulthood and represent a novel pathway through which EC mixtures could perturb normal reproductive function.

Collaboration


Dive into the Corinne Cotinot's collaboration.

Top Co-Authors

Avatar

Eric Pailhoux

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Marc Fellous

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar

Beatrice Mandon-Pepin

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bernard Vigier

Institut national de la recherche agronomique

View shared research outputs
Researchain Logo
Decentralizing Knowledge