Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cornel Fraefel is active.

Publication


Featured researches published by Cornel Fraefel.


Molecular and Cellular Biology | 2009

Downregulated MicroRNA-200a in Meningiomas Promotes Tumor Growth by Reducing E-Cadherin and Activating the Wnt/beta-Catenin Signaling Pathway

Okay Saydam; Yiping Shen; Thomas Wurdinger; Ozlem Senol; Elvan Boke; Marianne James; Bakhos A. Tannous; Anat Stemmer-Rachamimov; Ming Yi; Robert M. Stephens; Cornel Fraefel; James F. Gusella; Anna M. Krichevsky; Xandra O. Breakefield

ABSTRACT Meningiomas, one of the most common human brain tumors, are derived from arachnoidal cells associated with brain meninges, are usually benign, and are frequently associated with neurofibromatosis type 2. Here, we define a typical human meningioma microRNA (miRNA) profile and characterize the effects of one downregulated miRNA, miR-200a, on tumor growth. Elevated levels of miR-200a inhibited meningioma cell growth in culture and in a tumor model in vivo. Upregulation of miR-200a decreased the expression of transcription factors ZEB1 and SIP1, with consequent increased expression of E-cadherin, an adhesion protein associated with cell differentiation. Downregulation of miR-200a in meningiomas and arachnoidal cells resulted in increased expression of β-catenin and cyclin D1 involved in cell proliferation. miR-200a was found to directly target β-catenin mRNA, thereby inhibiting its translation and blocking Wnt/β-catenin signaling, which is frequently involved in cancer. A direct correlation was found between the downregulation of miR-200a and the upregulation of β-catenin in human meningioma samples. Thus, miR-200a appears to act as a multifunctional tumor suppressor miRNA in meningiomas through effects on the E-cadherin and Wnt/β-catenin signaling pathways. This reveals a previously unrecognized signaling cascade involved in meningioma tumor development and highlights a novel molecular interaction between miR-200a and Wnt signaling, thereby providing insights into novel therapies for meningiomas.


Virus Research | 2009

Functional roles of the tegument proteins of herpes simplex virus type 1

Barbara J. Kelly; Cornel Fraefel; Anthony L. Cunningham; Russell J. Diefenbach

Herpes virions consist of four morphologically distinct structures, a DNA core, capsid, tegument, and envelope. Tegument occupies the space between the nucleocapsid (capsid containing DNA core) and the envelope. A combination of genetic, biochemical and proteomic analysis of alphaherpes virions suggest the tegument contains in the order of 20 viral proteins. Historically the tegument has been described as amorphous but increasing evidence suggests there is an ordered addition of tegument during assembly. This review highlights the diverse roles, in addition to structural, that tegument plays during herpes viral replication using as an example herpes simplex virus type 1. Such diverse roles include: capsid transport during entry and egress; targeting of the capsid to the nucleus; regulation of transcription, translation and apoptosis; DNA replication; immune modulation; cytoskeletal assembly; nuclear egress of capsid; and viral assembly and final egress.


Journal of Virology | 2005

Herpes Simplex Virus 1 Envelopment Follows Two Diverse Pathways

Helene Leuzinger; Urs Ziegler; Elisabeth M. Schraner; Cornel Fraefel; Daniel L. Glauser; Irma Heid; Mathias Ackermann; Martin Mueller; Peter Wild

ABSTRACT Herpesvirus envelopment is assumed to follow an uneconomical pathway including primary envelopment at the inner nuclear membrane, de-envelopment at the outer nuclear membrane, and reenvelopment at the trans-Golgi network. In contrast to the hypothesis of de-envelopment by fusion of the primary envelope with the outer nuclear membrane, virions were demonstrated to be transported from the perinuclear space to rough endoplasmic reticulum (RER) cisternae. Here we show by high-resolution microscopy that herpes simplex virus 1 envelopment follows two diverse pathways. First, nuclear envelopment includes budding of capsids at the inner nuclear membrane into the perinuclear space whereby tegument and a thick electron dense envelope are acquired. The substance responsible for the dense envelope is speculated to enable intraluminal transportation of virions via RER into Golgi cisternae. Within Golgi cisternae, virions are packaged into transport vacuoles containing one or several virions. Second, for cytoplasmic envelopment, capsids gain direct access from the nucleus to the cytoplasm via impaired nuclear pores. Cytoplasmic capsids could bud at the outer nuclear membrane, at membranes of RER, Golgi cisternae, and large vacuoles, and at banana-shaped membranous entities that were found to continue into Golgi membranes. Envelopes originating by budding at the outer nuclear membrane and RER membrane also acquire a dense substance. Budding at Golgi stacks, designated wrapping, results in single virions within small vacuoles that contain electron-dense substances between envelope and vacuolar membranes.


Human Gene Therapy | 1999

Gene Transfer to the Nigrostriatal System by Hybrid Herpes Simplex Virus/Adeno-Associated Virus Amplicon Vectors

Lauren Costantini; David R. Jacoby; Samuel Wang; Cornel Fraefel; Xandra O. Breakefield; Ole Isacson

To improve gene transfer to CNS neurons, critical elements of herpes simplex virus 1 (HSV-1) amplicons and recombinant adeno-associated virus (AAV) vectors were combined to construct a hybrid amplicon vector, and then packaged via a helper virus-free system. We tested the HSV/AAV hybrid amplicon vectors for transduction efficiency and stability of transgene expression (green fluorescent protein) in primary neuronal cultures from rat fetal ventral mesencephalon, in comparison with traditional HSV amplicon, AAV, or adenovirus (Ad) vectors at the same multiplicity of infection. The HSA/AAV hybrid vectors transduced the highest number of primary neurons in culture 2 days after infection. As compared with all other vectors tested, only hybrid vectors containing the AAV rep gene maintained the 2-day level of transgene expression over 12 days in culture. This rep-containing hybrid vector was then tested for efficiency and safety in the brain. One month after injection into adult rat striatum (1 x 10(6) transducing units injected), transgene expression was observed within the striatum (ranging from 564 to 8610 cells) and the substantia nigra (via retrograde transport, ranging from 130 to 809 neurons). The HSV/AAV hybrid amplicon vectors transduced predominantly neurons within the striatum, and showed transduction efficacy similar to and in many cases higher than that of HSV amplicon vectors. No immune response was observed in the HSA/AAV hybrid vector-injected brains, as determined by immune markers specific for helper T lymphocytes, cytotoxic T lymphocytes, and microglia. This HSV/AAV hybrid system shows high transduction efficiency and stability in culture. The effective and safe transgene delivery into the nigrostriatal system illustrates its potential for therapeutic application for neurologic disorders, such as Parkinson and Huntington disease.


Journal of Clinical Microbiology | 2002

Quantification of Feline Herpesvirus 1 DNA in Ocular Fluid Samples of Clinically Diseased Cats by Real-Time TaqMan PCR

Andrea Vögtlin; Cornel Fraefel; S. Albini; Christian M. Leutenegger; Elisabeth M. Schraner; B. Spiess; Hans Lutz; Mathias Ackermann

ABSTRACT A fluorogenic PCR was established for the quantification of feline herpesvirus 1 (FeHV-1) DNA in ocular fluid samples of clinically diseased cats. The new assay was specific for FeHV-1 and sensitive. The 100% detection rate ranged from 0.6 to 6 50% tissue culture infective doses per sample. When spiked samples with known quantities of virus were used, infectious virus titers and quantification of viral DNA by PCR correlated to each other in a linear fashion (R2 = 0.9858) over a range of 4 orders of magnitude. Within this range, it was possible to calculate the FeHV-1 DNA content from a given infectious dose, and vice versa. The new diagnostic procedure was applied to ocular fluid samples from cats experimentally infected with FeHV-1 and specific FeHV-1-free cats. A good correlation between virus titer and quantitative PCR was observed, although only early in infection. In a second stage, the titer of infectious virus collapsed, while the PCR signal remained high. A constantly decreasing PCR signal accompanied by negative virus isolation was characteristic for a final stage of the infection. Finally, clinical samples from 20 cats that were suspected to suffer from FeHV-1 infection were analyzed. By comparing virus titers and quantitative PCR signals, it was possible to determine the current stage of the ongoing infection. Based on these findings, comparison of the results of consecutive samples allows the tracking of the course of the infection. Therefore, the new method combines the advantages of the two previously established conventional methods, qualitative PCR and virus isolation and titration.


Neuroreport | 1997

Green fluorescent protein as a reporter for retrovirus and helper virus-free HSV-1 amplicon vector-mediated gene transfer into neural cells in culture and in vivo

Aboody-Guterman Ks; Peter A. Pechan; Nikolai G. Rainov; Miguel Sena-Esteves; Andreas Jacobs; Evan Y. Snyder; Peter Wild; Elisabeth M. Schraner; Kurt Tobler; Xandra O. Breakefield; Cornel Fraefel

GREEN fluorescent protein (GFP) is an effective marker for retrovirus and herpes virus vector-mediated gene transfer into various central nervous system-derived cells, both proliferative and non-proliferative, in culture and in vivo. Retrovirus vectors were used to stably transduce several rat and human glioma lines, and a multi-potent mouse neural progenitor line in culture. Implantation of selected pools of transduced glioma cells into rodent brain allowed clear visualization of the tumor and the invading tumor edge. Helper virus-free HSV-1 amplicon vectors successfully transferred gfp into non-dividing primary neural cells in culture and in the rat brain. This study describes the versatility of GFP for: (i) labelling of glioma cells in experimental brain tumor models and neural progenitor cells by retrovirus vectors, and (ii) efficient, non-toxic delivery of genes to post mitotic cells of the nervous system using helper-virus free HSV-1 amplicon vectors.


Current Gene Therapy | 2004

Herpes Simplex Virus Type 1 Amplicons and their Hybrid Virus Partners, EBV, AAV, and Retrovirus

Angelika Oehmig; Cornel Fraefel; Xandra O. Breakefield; Mathias Ackermann

HSV-1 amplicons can accommodate foreign DNA of any size up to 150 kbp. Genomic sequences as well as cDNA, large transcriptional regulatory sequences for cell type-specific expression, or multiple transgenes can be inserted in a modular fashion. HSV-1 amplicon vectors deliver DNA efficiently into the cell nucleus as an extrachromosomal, non-replicating circular concatenate, which is rapidly diluted, at least in dividing cells. Consequently, transgene expression is lost within days to weeks in dividing cells, but may be retained for months in non-dividing cells. In contrast, vectors based on Epstein-Barr virus, adeno-associated virus, or retroviruses can mediate long-term transgene expression, as vector DNA is retained by episomal replication or chromosomal integration. Hybrid amplicons use genetic elements from HSV-1 that allow replication and packaging of the vector DNA into HSV-1 virions, thereby conserving the large transgene capacity of HSV-1, and genetic elements from other viruses that confer genetic stability to the vector DNA within transduced cells. Additional strategies to sustain genetic material in infected cells include the incorporation of recombinases from different bacteriophages or transposable elements of the Tc1/mariner family in the amplicon vector. Moreover, modification of the HSV-1 virion itself offers a myriad of possibilities to improve gene delivery by targeting specific cell populations or transporting foreign proteins, such as Cre recombinase or the adeno-associated virus Rep protein, which can control the fate and expression of the therapeutic transgene.


Journal of Virology | 2008

Live Visualization of Herpes Simplex Virus Type 1 Compartment Dynamics

Anna Paula de Oliveira; Daniel L. Glauser; Andrea S. Laimbacher; Regina Strasser; Elisabeth M. Schraner; Peter Wild; Urs Ziegler; Xandra O. Breakefield; Mathias Ackermann; Cornel Fraefel

ABSTRACT We have constructed a recombinant herpes simplex virus type 1 (HSV-1) that simultaneously encodes selected structural proteins from all three virion compartments—capsid, tegument, and envelope—fused with autofluorescent proteins. This triple-fluorescent recombinant, rHSV-RYC, was replication competent, albeit with delayed kinetics, incorporated the fusion proteins into all three virion compartments, and was comparable to wild-type HSV-1 at the ultrastructural level. The VP26 capsid fusion protein (monomeric red fluorescent protein [mRFP]-VP26) was first observed throughout the nucleus and later accumulated in viral replication compartments. In the course of infection, mRFP-VP26 formed small foci in the periphery of the replication compartments that expanded and coalesced over time into much larger foci. The envelope glycoprotein H (gH) fusion protein (enhanced yellow fluorescent protein [EYFP]-gH) was first observed accumulating in a vesicular pattern in the cytoplasm and was then incorporated primarily into the nuclear membrane. The VP16 tegument fusion protein (VP16-enhanced cyan fluorescent protein [ECFP]) was first observed in a diffuse nuclear pattern and then accumulated in viral replication compartments. In addition, it also formed small foci in the periphery of the replication compartments which, however, did not colocalize with the small mRFP-VP26 foci. Later, VP16-ECFP was redistributed out of the nucleus into the cytoplasm, where it accumulated in vesicular foci and in perinuclear clusters reminiscent of the Golgi apparatus. Late in infection, mRFP-VP26, EYFP-gH, and VP16-ECFP were found colocalizing in dots at the plasma membrane, possibly representing mature progeny virus. In summary, this study provides new insights into the dynamics of compartmentalization and interaction among capsid, tegument, and envelope proteins. Similar strategies can also be applied to assess other dynamic events in the virus life cycle, such as entry and trafficking.


Human Gene Therapy | 2000

Helper virus-free herpes simplex virus type 1 amplicon vectors for granulocyte-macrophage colony-stimulating factor-enhanced vaccination therapy for experimental glioma.

Ulrich Herrlinger; Andreas Jacobs; Ariel Quiñones; C. Woiciechowsky; Miguel Sena-Esteves; Nikolai G. Rainov; Cornel Fraefel; Xandra O. Breakefield

Subcutaneous vaccination therapy with glioma cells, which are retrovirally transduced to secrete granulocyte-macrophage colony-stimulating factor (GM-CSF), has previously proven effective in C57BL/6 mice harboring intracerebral GL261 gliomas. However, clinical ex vivo gene therapy for human gliomas would be difficult, as transgene delivery via retroviral vectors occurs only in dividing cells and ex vivo glioma cells have a low growth fraction. To circumvent this problem, a helper virus-free herpes simplex virus type 1 (HSV-1) amplicon vector was used. When primary cultures of human glioblastoma cells were infected with HSV-1 amplicon vectors at an MOI of 1, more than 90% of both dividing and nondividing cells were transduced. When cells were infected with an amplicon vector, HSVGM, bearing the GM-CSF cDNA in the presence of Polybrene, GM-CSF secretion into the medium during the first 24 hr after infection was 1026 ng/10(6) cells, whereas mock-infected cells did not secrete detectable GM-CSF. Subcutaneous vaccination of C57BL/6 mice with 5 x 10(5) irradiated HSVGM-transduced GL261 cells 7 days prior to intracerebral implantation of 10(6) wild-type GL261 cells yielded 60% long-term survivors (>80 days), similar to the 50% long-term survivors obtained by vaccination with retrovirally GM-CSF-transduced GL261 cells. In contrast, animals vaccinated with the same number of nontranduced GL261 cells or with GL261 cells infected with helper virus-free packaged HSV-1 amplicon vectors carrying no transgene showed only 10% long-term survivors. In conclusion, helper virus-free HSV-1 amplicon vectors appear to be effective for cytokine-enhanced vaccination therapy of glioma, with the advantages that both dividing and nondividing tumor cells can be infected, no viral proteins are expressed, and these vectors are safe and compatible with clinical use.


Journal of General Virology | 1994

BICP22 of bovine herpesvirus 1 is encoded by a spliced 1.7 kb RNA which exhibits immediate early and late transcription kinetics

Martin Schwyzer; U V Wirth; Bernd Vogt; Cornel Fraefel

Kinetic analysis of the two divergent immediate early (IE) transcription units of bovine herpesvirus 1 (BHV-1) revealed an unexpected behaviour. The IE1.7 promoter was not turned off at the end of the IE period but acted as a late promoter, unlike the adjacent IE4.2/2.9 promoter which was active only under IE conditions. The genome region specifying the IE1.7 gene was sequenced (0.814 to 0.839 map units). The IE1.7 promoter was found to overlap with duplicated sequence elements bearing close similarity to herpesvirus origins of replication, which may explain the biphasic transcription kinetics. Exons 1 and 2 of the spliced IE1.7 transcript were non-coding. Exon 3 was found to contain a single open reading frame encoding a protein of 300 amino acids that was designated BICP22 because of its homology to ICP22 (Vmw68) of herpes simplex virus type 1 and related proteins from other herpesviruses. The protein probably represents IEP-55, the most abundant BHV-1 phosphoprotein observed under IE conditions.

Collaboration


Dive into the Cornel Fraefel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge