Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cornelia C. Metges is active.

Publication


Featured researches published by Cornelia C. Metges.


Journal of Mass Spectrometry | 1996

Gas chromatography/combustion/isotope ratio mass spectrometric comparison of N-acetyl- and N-pivaloyl amino acid esters to measure 15N isotopic abundances in physiological samples: a pilot study on amino acid synthesis in the upper gastro-intestinal tract of minipigs.

Cornelia C. Metges; Klaus-Jürgen Petzke; Ulf Hennig

There is evidence that in animals and also in humans, non-specific nitrogen is used for de novo synthesis of indispensable amino acids by the microflora of the gastro-intestinal tract. Gas chromatography/combustion/isotope ratio mass spectrometry was applied to investigate whether lysine of intestinal origin is available for body protein synthesis. Two minipigs with an end-to-end ileorectal anastomosis received orally equimolar amounts of 15N as ammonium chloride or urea twice a day for 10 days. Samples of blood and ileal digesta were collected before and throughout the 10 days; tissue samples were taken at termination of the experiment. The N-acetyl-n-propyl (NAP)- and N-pivaloyl-i-propyl (NPP)-amino acid esters were evaluated for the determination of the 15N content of lysine and 16 other amino acids ranging from natural abundance to an enrichment of 0.6 APE 15N in a complex mixture of proteinogenic amino acids and several matrices. At natural abundances for all amino acids analysed, NAP and NPP derivatives gave mean precisions of 0.5 and 0.3/1000 delta 15N, respectively. The mean precision for NPP derivatives at enrichments between 0.42 and 1.10 AP 15N ranged between 1.0-15.0/1000 delta 15N. 15N from ammonium chloride was incorporated into lysine and in all other amino acids of serum albumin to a 2.5 times higher degree than from urea. Somewhat lower, but significant, lysine enrichments were detected in liver, duodenum and jejunum. After 10 days of ingestion of 15N-labeled urea a significant 15N enrichment in lysine of serum albumin could not be detected, although lysine in the ileal digesta was significantly labeled by day 5. This is the first report providing evidence that the microflora in the upper gastrointestinal tract of pigs is capable of synthesizing lysine de novo and that this lysine is available for body protein synthesis.


Current Opinion in Clinical Nutrition and Metabolic Care | 2010

Advances in natural stable isotope ratio analysis of human hair to determine nutritional and metabolic status

Klaus J. Petzke; Benjamin T. Fuller; Cornelia C. Metges

Purpose of reviewWe review the literature on the use of stable isotope ratios at natural abundance to reveal information about dietary habits and specific nutrient intakes in human hair protein (keratin) and amino acids. In particular, we examine whether hair isotopic compositions can be used as unbiased biomarkers to provide information about nutritional status, metabolism, and diseases. Recent findingsAlthough the majority of research on the stable isotope ratio analysis of hair has focused on bulk protein, methods have been recently employed to examine amino acid-specific isotope ratios using gas chromatography or liquid chromatography coupled to an isotope ratio mass spectrometer. The isotopic measurement of amino acids has the potential to answer research questions on amino acid nutrition, metabolism, and disease processes and can contribute to a better understanding of the variations in bulk protein isotope ratio values. First results suggest that stable isotope ratios are promising as unbiased nutritional biomarkers in epidemiological research. However, variations in stable isotope ratios of human hair are also influenced by nutrition-dependent nitrogen balance, and more controlled clinical research is needed to examine these effects in human hair. SummaryStable isotope ratio analysis at natural abundance in human hair protein offers a noninvasive method to reveal information about long-term nutritional exposure to specific nutrients, nutritional habits, and in the diagnostics of diseases leading to nutritional stress and impaired nitrogen balance.


American Journal of Physiology-endocrinology and Metabolism | 1999

Availability of intestinal microbial lysine for whole body lysine homeostasis in human subjects

Cornelia C. Metges; Antoine E. El-Khoury; Lidewij Henneman; Klaus J. Petzke; Ian Grant; Shahinaze Bedri; Paulo P. Pereira; Alfred M. Ajami; Malcolm F. Fuller; Vernon R. Young

We have investigated whether there is a net contribution of lysine synthesized de novo by the gastrointestinal microflora to lysine homeostasis in six adults. On two separate occasions an adequate diet was given for a total of 11 days, and a 24-h (12-h fast, 12-h fed) tracer protocol was performed on the last day, in which lysine turnover, oxidation, and splanchnic uptake were measured on the basis of intravenous and oral administration of L-[1-(13)C]lysine and L-[6,6-(2)H(2)]lysine, respectively. [(15)N(2)]urea or (15)NH(4)Cl was ingested daily over the last 6 days to label microbial protein. In addition, seven ileostomates were studied with (15)NH(4)Cl. [(15)N]lysine enrichment in fecal and ileal microbial protein, as precursor for microbial lysine absorption, and in plasma free lysine was measured by gas chromatography-combustion-isotope ratio mass spectrometry. Differences in plasma [(13)C]- and [(2)H(2)]lysine enrichments during the 12-h fed period were observed between the two (15)N tracer studies, although the reason is unclear, and possibly unrelated to the tracer form per se. In the normal adults, after (15)NH(4)Cl and [(15)N(2)]urea intake, respectively, lysine derived from fecal microbial protein accounted for 5 and 9% of the appearance rate of plasma lysine. With ileal microbial lysine enrichment, the contribution of microbial lysine to plasma lysine appearance was 44%. This amounts to a gross microbial lysine contribution to whole body plasma lysine turnover of between 11 and 130 mg. kg(-1). day(-1), depending on the [(15)N]lysine precursor used. However, insofar as microbial amino acid synthesis is accompanied by microbial breakdown of endogenous amino acids or their oxidation by intestinal tissues, this may not reflect a net increase in lysine absorption. Thus we cannot reliably estimate the quantitative contribution of microbial lysine to host lysine homeostasis with the present paradigm. However, the results confirm the significant presence of lysine of microbial origin in the plasma free lysine pool.We have investigated whether there is a net contribution of lysine synthesized de novo by the gastrointestinal microflora to lysine homeostasis in six adults. On two separate occasions an adequate diet was given for a total of 11 days, and a 24-h (12-h fast, 12-h fed) tracer protocol was performed on the last day, in which lysine turnover, oxidation, and splanchnic uptake were measured on the basis of intravenous and oral administration ofl-[1-13C]lysine andl-[6,6-2H2]lysine, respectively. [15N2]urea or15NH4Cl was ingested daily over the last 6 days to label microbial protein. In addition, seven ileostomates were studied with15NH4Cl. [15N]lysine enrichment in fecal and ileal microbial protein, as precursor for microbial lysine absorption, and in plasma free lysine was measured by gas chromatography-combustion-isotope ratio mass spectrometry. Differences in plasma [13C]- and [2H2]lysine enrichments during the 12-h fed period were observed between the two15N tracer studies, although the reason is unclear, and possibly unrelated to the tracer form per se. In the normal adults, after15NH4Cl and [15N2]urea intake, respectively, lysine derived from fecal microbial protein accounted for 5 and 9% of the appearance rate of plasma lysine. With ileal microbial lysine enrichment, the contribution of microbial lysine to plasma lysine appearance was 44%. This amounts to a gross microbial lysine contribution to whole body plasma lysine turnover of between 11 and 130 mg ⋅ kg-1 ⋅ day-1, depending on the [15N]lysine precursor used. However, insofar as microbial amino acid synthesis is accompanied by microbial breakdown of endogenous amino acids or their oxidation by intestinal tissues, this may not reflect a net increase in lysine absorption. Thus we cannot reliably estimate the quantitative contribution of microbial lysine to host lysine homeostasis with the present paradigm. However, the results confirm the significant presence of lysine of microbial origin in the plasma free lysine pool.


Advances in Experimental Medicine and Biology | 2009

Early Nutrition and Later Obesity: Animal Models Provide Insights into Mechanisms

Cornelia C. Metges

Epidemiological evidence suggests that in utero as well as early postnatal life exposure to an imbalanced nutrition are both related to a greater propensity to become obese in later life. Rodent and sheep models of metabolic programming of obesity by early life nutrition include maternal low and high dietary protein and energy or food intake as well as high fat diets. Maternal nutritional imbalance during pregnancy and/or lactation programs energy expenditure, food intake and physical activity in the offspring. Underlying mechanisms of altered energy balance in programmed offspring are associated with disturbances of ontogeny of hypothalamic feeding circuits, leptin and glucocorticoid action which have long-lasting effects on food intake, energy expenditure and fat tissue metabolism.


Archives of Animal Nutrition | 2007

Effects of dietary energy intake during gestation and lactation on milk yield and composition of first, second and fourth parity sows

Manfred Beyer; W. Jentsch; Siegfried Kuhla; Hildegard Wittenburg; Fred Kreienbring; Helmut Scholze; Paul Eberhard Rudolph; Cornelia C. Metges

Abstract In order to determine the effects of a varied level of dietary energy intake during pregnancy and lactation on milk yield and composition, first, second and fourth parity sows (Large White × German Landrace) were provided with energy at a level of either: (i) 100% of ME requirement (MEreq) during pregnancy and lactation, (ii) 120% MEreq during pregnancy and 80% during lactation, and (iii) 80% MEreq during pregnancy and 120% during lactation. In spite of equal target levels feed analysis revealed that gestating first parity sows with 120/80 treatment combination and lactating sows of 80/120 treatment combination received 25, and 11 – 17% more digestible N than in the respective 100/100 treatment combination. Irrespective of this 120/80 sows responded with the highest milk DM, fat, and energy contents, and the lowest lactose concentrations whereas protein levels where not affected, irrespective of parity (p < 0.05). Milk yield of sows in 1st and 4th lactation was 85 and 106% of that in 2nd lactation, respectively. Average milk composition was 18.1% DM, 4.9% protein, 6.8% fat, 5.6% lactose, and 0.8% ash. Milk composition changes ceased at day 7 of lactation with a reduction of milk GE and protein, and an increase of lactose content. Concentrations of threonine, arginine, valine, leucine, tyrosine, phenylalanine, cystine, and tryptophan, as well as stearic, oleic, and linoleic acid were higher in colostrum than in milk at later lactation stages. In contrast, laurine, myristic, palmitic, and palmitoleic acids were lower concentrated in colostrum. In conclusion, these results illustrate the importance of body reserve mobilization for milk production in sows and indicate that low energy supply during gestation cannot be compensated by higher energy supply during lactation.


Archives of Animal Nutrition | 2007

Effect of inulin supplementation on selected gastric, duodenal, and caecal microbiota and short chain fatty acid pattern in growing piglets

Markus Eberhard; Ulf Hennig; Siegfried Kuhla; Ronald M. Brunner; Brigitta Kleessen; Cornelia C. Metges

Abstract We explored whether bifidobacteria and lactobacilli numbers and other selected bacteria in the upper intestine and the caecum of growing pigs were affected by diet and intake of inulin. Starting at two weeks after weaning (28 d) 72 pigs were fed two types of diets (wheat/barley (WB) or maize/gluten (MG)), without or with 3% inulin (WB + I, MG + I) for three and six weeks. Intestinal bacteria were quantified by fluorescence-in-situ-hybridization (n = 8/group). Duration of feeding had no effect on the variables tested, so data for both periods were pooled. Gastric total bacteria amounted to log10 7.4/g digesta. Bifidobacteria were detected in stomach and duodenum two weeks after weaning and disappeared thereafter. In jejunum and caecum bifidobacteria were present at a level of log10 7.0/g digesta. Inulin did not alter numbers of lactobacilli, bifidobacteria, enterococci, enterobacteria and bacteria of the Clostridium coccoides/Eubacterium rectale-group. Inulin disappearance in stomach plus jejunum was higher with the MG diet (73.7 vs. 60.7%, p = 0.013). Caecal acetate was lower in inulin-supplemented diets (p < 0.05) whereas propionate and butyrate were higher in pigs fed the WB diets (p < 0.05). With the WB diet total caecal short chain fatty acids concentration was higher which resulted in a lower pH value (p < 0.05).


Journal of Nutrition | 2014

Low and High Dietary Protein:Carbohydrate Ratios during Pregnancy Affect Materno-Fetal Glucose Metabolism in Pigs

Cornelia C. Metges; S. Görs; Iris S. Lang; H.M. Hammon; Klaus-Peter Brüssow; Joachim M. Weitzel; Gerd Nürnberg; Charlotte Rehfeldt; Winfried Otten

Inadequate dietary protein during pregnancy causes intrauterine growth retardation. Whether this is related to altered maternal and fetal glucose metabolism was examined in pregnant sows comparing a high-protein:low-carbohydrate diet (HP-LC; 30% protein, 39% carbohydrates) with a moderately low-protein:high-carbohydrate diet (LP-HC; 6.5% protein, 68% carbohydrates) and the isoenergetic standard diet (ST; 12.1% protein, 60% carbohydrates). During late pregnancy, maternal and umbilical glucose metabolism and fetal hepatic mRNA expression of gluconeogenic enzymes were examined. During an i.v. glucose tolerance test (IVGTT), the LP-HC-fed sows had lower insulin concentrations and area under the curve (AUC), and higher glucose:insulin ratios than the ST- and the HP-LC-fed sows (P < 0.05). Insulin sensitivity and glucose clearance were higher in the LP-HC sows compared with ST sows (P < 0.05). Glucagon concentrations during postabsorptive conditions and IVGTT, and glucose AUC during IVGTT, were higher in the HP-LC group compared with the other groups (P < 0.001). (13)C glucose oxidation was lower in the HP-LC sows than in the ST and LP-HC sows (P < 0.05). The HP-LC fetuses were lighter and had a higher brain:liver ratio than the ST group (P < 0.05). The umbilical arterial inositol concentration was greater in the HP-LC group (P < 0.05) and overall small fetuses (230-572 g) had higher values than medium and heavy fetuses (≥573 g) (P < 0.05). Placental lactate release was lower in the LP-HC group than in the ST group (P < 0.05). Fetal glucose extraction tended to be lower in the LP-HC group than in the ST group (P = 0.07). In the HP-LC and LP-HC fetuses, hepatic mRNA expression of cytosolic phosphoenolpyruvate carboxykinase (PCK1) and glucose-6-phosphatase (G6PC) was higher than in the ST fetuses (P < 0.05). In conclusion, the HP-LC and LP-HC sows adapted by reducing glucose turnover and oxidation and having higher glucose utilization, respectively. The HP-LC and LP-HC fetuses adapted via prematurely expressed hepatic gluconeogenic enzymes.


The FASEB Journal | 2002

Dietary protein modifies hepatic gene expression associated with oxidative stress responsiveness in growing pigs

Manfred Schwerin; Ute Dorroch; Manfred Beyer; H.H. Swalve; Cornelia C. Metges; Peter Junghans

Understanding the basis for differences in nutrient requirements and for nutrient effects on health and performance requires an appreciation of the links between nutrition and gene expression. We developed and applied molecular probes to characterize diet‐associated postabsorptive hepatic gene expression in growing pigs chronically fed protein‐restricted diets based on either casein (CAS) or soy protein isolate (SPI). Eighty‐eight expressed sequence tags (ESTs) were identified on the basis of diet‐related changes in expression, by using an mRNA differential display method. Expression profiling based on transcription analysis by real‐time reverse transcriptasepolymerase chain reaction showed that the SPI diet significantly changed the pattern of gene expression as compared with the CAS diet and allowed identification of coregulated genes. The expression of six genes involved in the metabolism of stress response (glutathione S‐transferase, peptide methionine sulfoxide reductase, apolipoprotein A‐I, organic anion transport polypeptide 2, calnexin, heat shock transcription factor 1) exhibited significant changes in the transcription level and indicated an increased oxidative stress response in pigs fed the SPI diet. Hierarchical clustering of gene expression data of all 33 ESTs analyzed across 14 pigs fed the two different diets resulted in clustering of genes related to the oxidative stress response with genes related to the regulation of gene expression and neuronal signaling.


PLOS ONE | 2012

High and Low Protein∶ Carbohydrate Dietary Ratios during Gestation Alter Maternal-Fetal Cortisol Regulation in Pigs

Ellen Kanitz; Winfried Otten; Margret Tuchscherer; Maria Gräbner; Klaus-Peter Brüssow; Charlotte Rehfeldt; Cornelia C. Metges

Imbalanced maternal nutrition during gestation can cause alterations of the hypothalamic-pituitary-adrenal (HPA) system in offspring. The present study investigated the effects of maternal low- and high-protein diets during gestation in pigs on the maternal-fetal HPA regulation and expression of the glucocorticoid receptor (GR), mineralocorticoid receptor (MR), 11β-hydroxysteroid dehydrogenase 1 and 2 (11β-HSD1 and 11β-HSD2) and c-fos mRNAs in the placenta and fetal brain. Twenty-seven German Landrace sows were fed diets with high (HP, 30%), low (LP, 6.5%) or adequate (AP, 12.1%) protein levels made isoenergetic by varying the carbohydrate levels. On gestational day 94, fetuses were recovered under general anesthesia for the collection of blood, brain and placenta samples. The LP diet in sows increased salivary cortisol levels during gestation compared to the HP and AP sows and caused an increase of placental GR and c-fos mRNA expression. However, the diurnal rhythm of plasma cortisol was disturbed in both LP and HP sows. Total plasma cortisol concentrations in the umbilical cord vessels were elevated in fetuses from HP sows, whereas corticosteroid-binding globulin levels were decreased in LP fetuses. In the hypothalamus, LP fetuses displayed an enhanced mRNA expression of 11β-HSD1 and a reduced expression of c-fos. Additionally, the 11β-HSD2 mRNA expression was decreased in both LP and HP fetuses. The present results suggest that both low and high protein∶carbohydrate dietary ratios during gestation may alter the expression of genes encoding key determinants of glucocorticoid hormone action in the fetus with potential long-lasting consequences for stress adaptation and health.


Current Opinion in Clinical Nutrition and Metabolic Care | 2006

Synthesis and absorption of intestinal microbial lysine in humans and non-ruminant animals and impact on human estimated average requirement of dietary lysine

Cornelia C. Metges; Markus Eberhard; Klaus J. Petzke

Purpose of reviewWhile there are reports on the nature of synthesis and absorption of intestinal microbial lysine in humans and non-ruminant animals, there are few efforts to quantify microbial amino acid absorption in human subjects. We review the available information on the synthesis of microbial lysine and the quantification of its absorption and utilization by the human host and monogastric model animals. In addition, we explore the impact of microbial lysine on the current estimated average requirement of dietary lysine. Recent findingsIt is still uncertain whether microbial amino acids are absorbed primarily from the small or the large intestine in humans. In the pig, the majority of microbial lysine is absorbed in the small intestine. It appears that microbial lysine contribution is responsive to the nutritional status of the host. Estimates for microbial lysine contribution in adult humans on adequate or low protein diets range from 12 to 68 mg/kg per day. It is unlikely that these estimates represent net values because of methodological concerns related to the 15N tracer methodology used. SummaryWe conclude that microbial lysine contributes to the lysine homeostasis in humans and other non-ruminant mammals. Microbial lysine utilization by the host is a continuous process and occurs both with low, adequate, and high protein intakes, and under protein-free and low lysine dietary conditions in growing and adult individuals. We also conclude that the estimated average lysine requirement for humans already considers lysine contributed by the intestinal microbiota.

Collaboration


Dive into the Cornelia C. Metges's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Susanne Klaus

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vernon R. Young

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge