Cornelia Class
Lamont–Doherty Earth Observatory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Cornelia Class.
Earth and Planetary Science Letters | 1997
Cornelia Class; Steven L. Goldstein
Abstract Trace element relationships of near-primary alkalic lavas from La Grille volcano, Grande Comore, in the Indian Ocean, as well as those of the Honolulu volcanic series, Oahu, Hawaii, show that their sources contain amphibole and/or phlogopite. Small amounts of each mineral (2% amphibole in the source of La Grille and 0.5% phlogopite plus some amphibole in the source of the Honolulu volcanics) and a range of absolute degrees of partial melting from ∼ 1 to ∼ 5% for both series are consistent with the observed trace element variation. Amphibole and phlogopite are not stable at the temperatures of convecting upper mantle or upwelling thermal plumes from the deep mantle; however, they are stable at pressure-temperature conditions of the oceanic lithospheric mantle. Therefore, the presence of amphibole and/or phlogopite in the magma source region of volcanics is strong evidence for lithospheric melting, and we conclude that the La Grille and the Honolulu series formed by melting of the oceanic lithospheric mantle. The identification of amphibole ± phlogopite in the source region of both series implies that the metasomatism by fluids or volatile-rich melts occurred prior to melting. The presence of hydrous phases results in a lower solidus temperature of the lithospheric mantle, which can be reached by conductive heating by the thermal plumes. Isotope ratios of the La Grille and the Honolulu series display a restricted range in composition and represent compositional end-members for each island. Larger isotopic variations in shield lavas, represented by the contemporaneous Karthala volcano on Grande Comore and the older Koolau series on Oahu, reflect interaction of the upwelling thermal plumes with the lithospheric mantle rather than the heterogeneity of deep-seated mantle plume sources or entrainment of mantle material in the rising plume. Literature Os Sr isotope ratio covariations constrain the process of plume-lithosphere interaction as occurring through mixing of plume melts and low-degree melts from the metasomatized oceanic lithospheric mantle. The characterization of the lithospheric mantle signature allows the isotopic composition of the deep mantle plume components to be identified, and mixing relationships show that the Karthala and Koolau plume end-members have nearly uniform isotopic compositions. Based on independent arguments, isotopic variations on Heard and Easter islands have been shown to be a result of mixing between deep plume sources having distinct isotopic compositions with lithosphere or shallow asthenospheric mantle. To the extent that these case studies are representative of oceanic island volcanism, they indicate that interaction with oceanic lithospheric mantle plays an important role in the compositions of lavas erupted during the shield-building stage of plume magmatism, and that isotopic compositions of deep mantle plume sources are nearly uniform on the scale that they are sampled by melting.
Nature | 2005
Cornelia Class; Steven L. Goldstein
Degassing of the Earths mantle through magmatism results in the irreversible loss of helium to space, and high 3He/4He ratios observed in oceanic basalts have been considered the main evidence for a ‘primordial’ undegassed deep mantle reservoir. Here we present a new global data compilation of ocean island basalts, representing upwelling ‘plumes’ from the deep mantle, and show that island groups with the highest primordial signal (high 3He/4He ratios) have striking chemical and isotopic similarities to mid-ocean-ridge basalts. We interpret this as indicating a common history of mantle trace element depletion through magmatism. The high 3He/4He in plumes may thus reflect incomplete degassing of the deep Earth during continent and ocean crust formation. We infer that differences between plumes and the upper-mantle source of ocean-ridge basalts reflect isolation of plume sources from the convecting mantle for ∼1–2 Gyr. An undegassed, primordial reservoir in the mantle would therefore not be required, thus reconciling a long-standing contradiction in mantle dynamics.
Geology | 2013
Joana Rohde; Kaj Hoernle; Folkmar Hauff; Reinhard Werner; John O'Connor; Cornelia Class; Dieter Garbe-Schönberg; Wilfried Jokat
Asymmetrically zoned hotspot tracks in the Pacific Ocean are interpreted to have formed from zoned plumes originating from the large-scale, lower-mantle, low-seismic-velocity anomaly (superplume?) beneath the southern Pacific, providing direct information about lowermantle compositional heterogeneity. New trace-element and Sr-Nd-Hf-Pb isotope data from the classic Tristan-Gough hotspot track in the South Atlantic also display a bilateral, asymmetric zonation with two distinct mantle source components, making it the first zoned plume to be recognized overlying the African superplume. The plume zonation can be traced for 70 m.y., four times longer than recognized for Pacific zoned hotspot tracks. These findings confirm that the proposed zonation of Pacific hotspots is not simply a geochemical oddity, but could be a major feature of plumes derived from lower-mantle superplumes. We propose that the enriched southern Gough subtrack source with elevated 207Pb/204Pb and 208Pb/204Pb at a given 206Pb/204Pb, but low 143Nd/144Nd and 176Hf/177Hf (DUPAL-like composition), may reflect the African superplume composition, whereas the more depleted northern Tristan subtrack source could represent a mixture of the superplume with the surrounding depleted mantle. Our results strengthen arguments that the enriched signature (DUPAL anomaly) in the South Atlantic could be derived from the lower mantle.
Geology | 2006
Cornelia Class; Anton P. le Roex
Unusual compositions of some oceanic basalts have been attributed to their sources containing continental lithosphere detached during the breakup of Gondwana. However, the processes of how such continental lithospheric material is detached and transported into the ocean basin have not been constrained. Here we identify Walvis Ridge, where it has been argued that Deep Sea Drilling Project (DSDP) Site 525A contains continental material, as a unique location to constrain these processes. Absolute plate motion (relative to the Tristan mantle plume) and relative plate motion (between Africa and South America) of the African plate are oblique to one another, such that tectonic detachment versus hotspot-related thermal erosion should sample spatially separated continental units of different age. We present isotopic compositions of xenoliths representing the neo-Proterozoic lithosphere at the inferred site for tectonic detachment during continental breakup and show that this process does not explain the Walvis Ridge DSDP Site 525A mantle source. Rather, thermal erosion of ancient cratonic mantle by the Tristan mantle plume is indicated. A convective return flow is required to transport the eroded subcontinental lithospheric mantle to the site of plume activity some ∼50 m.y. later and provides constraints on the direction and velocity of mantle flow in the upper mantle.
Nature | 2016
Yaakov Weiss; Cornelia Class; Steven L. Goldstein; Takeshi Hanyu
Mantle melting, which leads to the formation of oceanic and continental crust, together with crust recycling through plate tectonics, are the primary processes that drive the chemical differentiation of the silicate Earth. The present-day mantle, as sampled by oceanic basalts, shows large chemical and isotopic variability bounded by a few end-member compositions. Among these, the HIMU end-member (having a high U/Pb ratio, μ) has been generally considered to represent subducted/recycled basaltic oceanic crust. However, this concept has been challenged by recent studies of the mantle source of HIMU magmas. For example, analyses of olivine phenocrysts in HIMU lavas indicate derivation from the partial melting of peridotite, rather than from the pyroxenitic remnants of recycled oceanic basalt. Here we report data that elucidate the source of these lavas: high-precision trace-element analyses of olivine phenocrysts point to peridotite that has been metasomatized by carbonatite fluids. Moreover, similarities in the trace-element patterns of carbonatitic melt inclusions in diamonds and HIMU lavas indicate that the metasomatism occurred in the subcontinental lithospheric mantle, fused to the base of the continental crust and isolated from mantle convection. Taking into account evidence from sulfur isotope data for Archean to early Proterozoic surface material in the deep HIMU mantle source, a multi-stage evolution is revealed for the HIMU end-member, spanning more than half of Earth’s history. Before entrainment in the convecting mantle, storage in a boundary layer, upwelling as a mantle plume and partial melting to become ocean island basalt, the HIMU source formed as Archean–early Proterozoic subduction-related carbonatite-metasomatized subcontinental lithospheric mantle.
Geology | 2013
Giulio Borghini; Elisabetta Rampone; Alberto Zanetti; Cornelia Class; Anna Cipriani; Albrecht W. Hofmann; Steven L. Goldstein
Pyroxenites embedded in peridotite are often invoked as a major cause of short-length scale isotopic heterogeneities in the upper mantle, but there has been little direct evidence. We report spatially controlled chemical and Sr-Nd isotopic compositions of pyroxenites and their host peridotites from an ophiolitic mantle sequence in the Northern Apennines, Italy, with depleted mantle compositions, representing a surface exposure of veined upper mantle, a potential source for mid-oceanic-ridge basalts (MORB). Interaction between pyroxenites and adjacent mantle rocks results in centimeter-scale chemical modifi cations in the host perido- tites, systematically lowering their Sm/Nd ratios. Over time, this interaction causes the host peridotite at >0.1 m scale to acquire an isotopic heterogeneity larger than the range defi ned by the peridotite and pyroxenite end-members. Moreover, the 143 Nd/ 144 Nd variation of a single outcrop covers most of the global Nd isotopic variability documented in abyssal peridotites. Such pyroxenite-peridotite veined mantle domains may represent the enriched component rarely found in abyssal peridotites, but often invoked to account for the low end of 143 Nd/ 144 Nd
Seismological Research Letters | 2016
Donna J. Shillington; James B. Gaherty; Cynthia Ebinger; Christopher A. Scholz; Kate Selway; Andrew A. Nyblade; Paul A. Bedrosian; Cornelia Class; Scott L. Nooner; Matthew E. Pritchard; Julie Elliott; Patrick R.N. Chindandali; Gaby Mbogoni; Richard Wambura Ferdinand; Nelson Boniface; Shukrani Manya; Godson Kamihanda; Elifuraha Saria; G. D. Mulibo; Jalf Salima; Abdul Mruma; Leonard Kalindekafe; Natalie J. Accardo; Daud Ntambila; Marsella Kachingwe; Gary T. Mesko; Tannis McCartney; Melania Maquay; J.P. O’Donnell; Khalfan Mtelela
The Study of Extension and maGmatism in Malawi aNd Tanzania (SEGMeNT) project acquired a comprehensive suite of geophysical and geochemical datasets across the northern Malawi (Nyasa) rift in the East Africa rift system. Onshore/offshore active and passive seismic data, long‐period and wideband magnetotelluric data, continuous Global Positioning System data, and geochemical samples were acquired between 2012 and 2016. This combination of data is intended to elucidate the sedimentary, crustal, and upper‐mantle architecture of the rift, patterns of active deformation, and the origin and age of rift‐related magmatism. A unique component of our program was the acquisition of seismic data in Lake Malawi, including seismic reflection, onshore/offshore wide‐angle seismic reflection/refraction, and broadband seismic data from lake‐bottom seismometers, a towed streamer, and a large towed air‐gun source.
Geochemistry Geophysics Geosystems | 2000
Cornelia Class; Daniel M. Miller; Steven L. Goldstein; Charles H. Langmuir
Lithos | 2004
Megan Harris; Anton P. le Roex; Cornelia Class
Journal of Petrology | 1998
Cornelia Class; Steven L. Goldstein; Rainer Altherr; Patrick Bachèlery