Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cornelia Halin is active.

Publication


Featured researches published by Cornelia Halin.


Nature Biotechnology | 2002

Enhancement of the antitumor activity of interleukin-12 by targeted delivery to neovasculature

Cornelia Halin; S. Rondini; F. Nilsson; Alexander Berndt; H. Kosmehl; Luciano Zardi; Dario Neri

Interleukin-12 (IL-12) is a heterodimeric cytokine with potent immunostimulatory activity and anti-angiogenic properties. Its clinical applications are limited, however, by severe side-effects. Here we report that an IL-12 fusion protein, consisting of IL-12 fused to a human antibody fragment specific to the oncofetal ED-B domain of fibronectin, markedly enhances the antitumor activity of this cytokine, as demonstrated in a mouse lung-metastasis model and in two models of mice bearing different aggressive murine tumors. The residual small tumor masses seen in the treated mice were infiltrated with lymphocytes, macrophages, and natural killer cells and had elevated interferon γ (IFN-γ). These results are of therapeutic relevance as the ED-B domain of fibronectin, a naturally occurring marker of angiogenesis identical in mouse and man, is expressed in the majority of aggressive solid tumors but is not detectable in normal vessels and tissues.


Blood | 2011

Tissue inflammation modulates gene expression of lymphatic endothelial cells and dendritic cell migration in a stimulus-dependent manner

Benjamin Vigl; David Aebischer; Maximilian Nitschké; Tamara Röthlin; Olga Antsiferova; Cornelia Halin

Chemokines and adhesion molecules up-regulated in lymphatic endothelial cells (LECs) during tissue inflammation are thought to enhance dendritic cell (DC) migration to draining lymph nodes, but the in vivo control of this process is not well understood. We performed a transcriptional profiling analysis of LECs isolated from murine skin and found that inflammation induced by a contact hypersensitivity (CHS) response up-regulated the adhesion molecules ICAM-1 and VCAM-1 and inflammatory chemokines. Importantly, the lymphatic markers Prox-1, VEGFR3, and LYVE-1 were significantly down-regulated during CHS. By contrast, skin inflammation induced by complete Freund adjuvant induced a different pattern of chemokine and lymphatic marker gene expression and almost no ICAM-1 up-regulation in LECs. Fluorescein isothiocyanate painting experiments revealed that DC migration to draining lymph nodes was more strongly increased in complete Freund adjuvant-induced than in CHS-induced inflammation. Surprisingly, DC migration did not correlate with the induction of CCL21 and ICAM-1 protein in LECs. Although the requirement for CCR7 signaling became further pronounced during inflammation, CCR7-independent signals had an additional, albeit moderate, impact on enhancing DC migration. Collectively, these findings indicate that DC migration in response to inflammation is stimulus-specific, mainly CCR7-dependent, and overall only moderately enhanced by LEC-induced genes other than CCL21.


Nature Immunology | 2005

Activation of bone marrow-resident memory T cells by circulating, antigen-bearing dendritic cells

Lois L. Cavanagh; Roberto Bonasio; Irina B. Mazo; Cornelia Halin; Guiying Cheng; Adrianus W. M. van der Velden; Annaiah Cariappa; Catherine M. Chase; Paul S. Russell; Michael N. Starnbach; Pandelakis A. Koni; Shiv Pillai; Wolfgang Weninger; Ulrich H. von Andrian

Dendritic cells (DCs) carry antigen from peripheral tissues via lymphatics to lymph nodes. We report here that differentiated DCs can also travel from the periphery into the blood. Circulating DCs migrated to the spleen, liver and lung but not lymph nodes. They also homed to the bone marrow, where they were retained better than in most other tissues. Homing of DCs to the bone marrow depended on constitutively expressed vascular cell adhesion molecule 1 and endothelial selectins in bone marrow microvessels. Two-photon intravital microscopy in bone marrow cavities showed that DCs formed stable antigen-dependent contacts with bone marrow–resident central memory T cells. Moreover, using this previously unknown migratory pathway, antigen-pulsed DCs were able to trigger central memory T cell–mediated recall responses in the bone marrow.


Circulation Research | 2004

Molecular imaging of atherosclerotic plaques using a human antibody against the extra-domain B of fibronectin

Christian M. Matter; Pia K. Schuler; Patrizia Alessi; Patricia Stutzmann Meier; Romeo Ricci; Dongming Zhang; Cornelia Halin; Patrizia Castellani; Luciano Zardi; Christoph Hofer; Matteo Montani; Dario Neri; Thomas F. Lüscher

Current imaging modalities of human atherosclerosis, such as angiography, ultrasound, and computed tomography, visualize plaque morphology. However, methods that provide insight into plaque biology using molecular tools are still insufficient. The extra-domain B (ED-B) is inserted into the fibronectin molecule by alternative splicing during angiogenesis and tissue remodeling but is virtually undetectable in normal adult tissues. Angiogenesis and tissue repair are also hallmarks of advanced plaques. For imaging atherosclerotic plaques, the human antibody L19 (specific against ED-B) and a negative control antibody were labeled with radioiodine or infrared fluorophores and injected intravenously into atherosclerotic apolipoprotein E–null (ApoE−/−) or normal wild-type mice. Aortas isolated 4 hours, 24 hours, and 3 days after injection exhibited a selective and stable uptake of L19 when using radiographic or fluorescent imaging. L19 binding was confined to the plaques as assessed by fat staining. Comparisons between fat staining and autoradiographies 24 hours after 125I-labeled L19 revealed a significant correlation (r=0.89; P<0.0001). Minimal antibody uptake was observed in normal vessels from wild-type mice receiving the L19 antibody and in atherosclerotic vessels from ApoE−/− mice receiving the negative control antibody. Immunohistochemical studies revealed increased expression of ED-B not only in murine but also in human plaques, in which it was found predominantly around vasa vasorum and plaque matrix. In summary, we demonstrate selective targeting of atheromas in mice using the human antibody to the ED-B domain of fibronectin. Thus, our findings may set the stage for antibody-based molecular imaging of atherosclerotic plaques in the intact organism.


Bioconjugate Chemistry | 2002

Quantitation of the tumor-targeting properties of antibody fragments conjugated to cell-permeating HIV-1 TAT peptides.

Uwe Niesner; Cornelia Halin; Luisa Lozzi; Maja Günthert; Paolo Neri; Heidi Wunderli-Allenspach; Luciano Zardi; Dario Neri

Human monoclonal antibodies are promising agents for the development of more selective anticancer therapeutics. However, the tumor-targeting efficiency of most anticancer antibodies is severely limited by their poor penetration into the tumor mass. Recent studies have shown that a peptide derived from the HIV TAT protein could improve the distribution of cytoplasmic reporter proteins when administered systemically as fusion proteins or cross-linked chimeras. In this article, we tested by quantitative biodistribtution analysis whether conjugation to TAT peptides could improve the tumor targeting properties of scFv(L19)-Cys: an engineered human antibody fragment specific for the ED-B domain of fibronectin, a marker located in the modified extracellular matrix surrounding tumor neovasculature. Our results show that TAT peptides, consisting either of L-amino acids or D-amino acids, can efficiently transduce target cells when conjugated to fluorophores and/or antibody fragments, suggesting a receptor-independent cell entry mechanism. However, conjugation of scFv(L19)-Cys to TAT peptides resulted in a severely reduced tumor targeting performance compared to the unconjugated antibody, as measured in murine F9 teratocarcinoma-bearing mice, after intravenous injection of the radiolabeled antibody preparations. Our results outline the usefulness of TAT peptides for the efficient in vitro transduction of cells with globular proteins. In particular, the use of TAT peptides composed of D-amino acids may significantly reduce proteolytic degradation. At the same time, the poor biodistribution properties of antibody-TAT conjugates cast doubts over the applicability of this methodology for the delivery of biopharmaceuticals in vivo.


Blood | 2010

Global lymphoid tissue remodeling during a viral infection is orchestrated by a B cell-lymphotoxin-dependent pathway

Varsha Kumar; Elke Scandella; Renzo Danuser; Lucas Onder; Maximilian Nitschké; Yoshinori Fukui; Cornelia Halin; Burkhard Ludewig; Jens V. Stein

Adaptive immune responses are characterized by substantial restructuring of secondary lymphoid organs. The molecular and cellular factors responsible for virus-induced lymphoid remodeling are not well known to date. Here we applied optical projection tomography, a mesoscopic imaging technique, for a global analysis of the entire 3-dimensional structure of mouse peripheral lymph nodes (PLNs), focusing on B-cell areas and high endothelial venule (HEV) networks. Structural homeostasis of PLNs was characterized by a strict correlation between total PLN volume, B-cell volume, B-cell follicle number, and HEV length. After infection with lymphocytic choriomeningitis virus, we observed a substantial, lymphotoxin (LT) beta-receptor-dependent reorganization of the PLN microarchitecture, in which an initial B-cell influx was followed by 3-fold increases in PLN volume and HEV network length on day 8 after infection. Adoptive transfer experiments revealed that virus-induced PLN and HEV network remodeling required LTalpha(1)beta(2)-expressing B cells, whereas the inhibition of vascular endothelial growth factor-A signaling pathways had no significant effect on PLN expansion. In summary, lymphocytic choriomeningitis virus-induced PLN growth depends on a vascular endothelial growth factor-A-independent, LT- and B cell-dependent morphogenic pathway, as revealed by an in-depth mesoscopic analysis of the global PLN structure.


Blood | 2012

IL-7-producing stromal cells are critical for lymph node remodeling

Lucas Onder; Priyanka Narang; Elke Scandella; Qian Chai; Kerim Hoorweg; Cornelia Halin; Ellen R. Richie; Paul M. Kaye; Jürgen Westermann; Mark Coles; Burkhard Ludewig

Nonhematopoietic stromal cells of secondary lymphoid organs form important scaffold and fluid transport structures, such as lymph node (LN) trabeculae, lymph vessels, and conduits. Furthermore, through the production of chemokines and cytokines, these cells generate a particular microenvironment that determines lymphocyte positioning and supports lymphocyte homeostasis. IL-7 is an important stromal cell-derived cytokine that has been considered to be derived mainly from T-cell zone fibroblastic reticular cells. We show here that lymphatic endothelial cells (LECs) are a prominent source of IL-7 both in human and murine LNs. Using bacterial artificial chromosome transgenic IL-7-Cre mice, we found that fibroblastic reticular cells and LECs strongly up-regulated IL-7 expression during LN remodeling after viral infection and LN reconstruction after avascular transplantation. Furthermore, IL-7-producing stromal cells contributed to de novo formation of LyveI-positive lymphatic structures connecting reconstructed LNs with the surrounding tissue. Importantly, diphtheria toxin-mediated depletion of IL-7-producing stromal cells completely abolished LN reconstruction. Taken together, this study identifies LN LECs as a major source of IL-7 and shows that IL-7-producing stromal cells are critical for reconstruction and remodeling of the distinct LN microenvironment.


American Journal of Pathology | 2008

Inhibition of Chronic and Acute Skin Inflammation by Treatment with a Vascular Endothelial Growth Factor Receptor Tyrosine Kinase Inhibitor

Cornelia Halin; Hermann Fahrngruber; Josef G. Meingassner; Guido Bold; Amanda Littlewood-Evans; Anton Stuetz; Michael Detmar

Although vascular remodeling is a hallmark of many chronic inflammatory disorders, antivascular strategies to treat these conditions have received little attention to date. We investigated the effects of a newly identified vascular endothelial growth factor (VEGF) receptor tyrosine-kinase inhibitor, NVP-BAW2881, on endothelial cell function in vitro and its anti-inflammatory activity in different animal models. NVP-BAW2881 inhibited proliferation, migration, and tube formation by human umbilical vein endothelial cells and lymphatic endothelial cells in vitro. In a transgenic mouse model of psoriasis, NVP-BAW2881 reduced the number of blood and lymphatic vessels and infiltrating leukocytes in the skin, and normalized the epidermal architecture. NVP-BAW2881 also displayed strong anti-inflammatory effects in models of acute inflammation; pretreatment with topical NVP-BAW2881 significantly inhibited VEGF-A-induced vascular permeability in the skin of pigs and mice. Furthermore, topical application of NVP-BAW2881 reduced the inflammatory response elicited in pig skin by UV-B irradiation or by contact hypersensitivity reactions. These results demonstrate for the first time that VEGF receptor tyrosine-kinase inhibitors might be used to treat patients with inflammatory skin disorders such as psoriasis.


International Journal of Cancer | 2002

Tumor‐targeting properties of antibody–vascular endothelial growth factor fusion proteins

Cornelia Halin; Uwe Niesner; Maria Elena Villani; Luciano Zardi; Dario Neri

A major problem of antibody‐based targeting of solid tumors is the poor penetration of antibodies into tumor tissue. Vasoactive immunoconjugates have been proposed as a means of increasing antibody uptake in tumors. In principle, VEGF (also known as vascular permeability factor) could selectively alter vascular permeability, leading to improved tumor targeting. A possible role for VEGF in the targeting of tumor neovasculature has been postulated, based on the overexpression of VEGF receptors in tumor endothelial cells. However, quantitative biodistribution studies on this topic are not available. In this report, we describe the cloning, expression, characterization and biodistribution in tumor‐bearing mice of antibodies fused to either VEGF120 or VEGF164 The MAb fragments chosen for analysis were scFv(L19), specific for the ED‐B domain of fibronectin, a marker of angiogenesis, and scFv(HyHEL‐10), a negative control antibody of irrelevant specificity in mice. Neither unconjugated VEGF nor scFv(HyHEL‐10)–VEGF fusion proteins showed accumulation in the tumor (tumor:blood ratios approx. 1 at 4 hr and 24 hr postinjection). By contrast, scFv(L19)–VEGF120 but not scFv(L19)–VEGF164 showed significant accumulation in tumors (tumor:blood ratio = 9.3 at 24 hr) but was not superior to unconjugated scFv(L19). Preinjection of unlabeled scFv(L19)–VEGF120 prior to administration of radiolabeled fusion protein led to increased accumulation of radiolabeled scFv(L19)–VEGF120 in the tumor but only at very high concentrations (20 μg/mouse).


Methods in Enzymology | 2008

Chapter 1 Inflammation, Angiogenesis, and Lymphangiogenesis

Cornelia Halin; Michael Detmar

The growth of blood and lymphatic vessels, namely angiogenesis and lymphangiogenesis, is well known to be of importance for tumor growth and metastatic spread. In fact, several therapeutic strategies are currently being pursued in the clinic to interfere with these processes. By contrast, vascular remodeling associated with chronic inflammatory disorders, such as psoriasis, rheumatoid arthritis or inflammatory bowel disease, is only now emerging as a potential new target to treat these conditions. Animal models of inflammation, which mimic the inflammatory and the vascular phenotype of the disease, are important tools for studying inflammation and the accompanying (lymph)angiogenic response in vivo. This review provides a brief summary of our current knowledge of inflammation-induced angiogenesis and lymphangiogenesis and of selected mouse models that can be used to analyze these processes in vivo. It also provides a detailed description of methods, such as immunofluorescence or fluorescence-activated cell sorting (FACS) that can be used to visualize and quantitate vascular remodeling in inflamed tissues.

Collaboration


Dive into the Cornelia Halin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dario Neri

Medical Research Council

View shared research outputs
Top Co-Authors

Avatar

Luciano Zardi

Istituto Giannina Gaslini

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dario Neri

Medical Research Council

View shared research outputs
Top Co-Authors

Avatar

Steven T. Proulx

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Benjamin Vigl

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Maximilian Nitschké

École Polytechnique Fédérale de Lausanne

View shared research outputs
Researchain Logo
Decentralizing Knowledge