Cornelia Hardt
University of Duisburg-Essen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Cornelia Hardt.
Nature Communications | 2015
Khairnar; Duhan; Sathish Kumar Maney; Nadine Honke; Namir Shaabani; Aleksandra A. Pandyra; Seifert M; Pozdeev; Haifeng C. Xu; Piyush Sharma; Baldin F; Marquardsen F; Katja Merches; Elisabeth Lang; Carsten J. Kirschning; Astrid M. Westendorf; Dieter Häussinger; Florian Lang; Ulf Dittmer; Küppers R; Mike Recher; Cornelia Hardt; Scheffrahn I; Beauchemin N; Göthert; Bernhard B. Singer; Philipp A. Lang; Karl S. Lang
B cells are essential for antiviral immune defence because they produce neutralizing antibodies, present antigen and maintain the lymphoid architecture. Here we show that intrinsic signalling of CEACAM1 is essential for generating efficient B-cell responses. Although CEACAM1 exerts limited influence on the proliferation of B cells, expression of CEACAM1 induces survival of proliferating B cells via the BTK/Syk/NF-κB-axis. The absence of this signalling cascade in naive Ceacam1−/− mice limits the survival of B cells. During systemic infection with cytopathic vesicular stomatitis virus, Ceacam1−/− mice can barely induce neutralizing antibody responses and die early after infection. We find, therefore, that CEACAM1 is a crucial regulator of B-cell survival, influencing B-cell numbers and protective antiviral antibody responses.
Cell Death and Disease | 2016
Namir Shaabani; Vikas Duhan; Vishal Khairnar; Asmae Gassa; Rita Ferrer-Tur; Dieter Häussinger; Mike Recher; Gennadiy Zelinskyy; Jia Liu; Ulf Dittmer; Mirko Trilling; Stefanie Scheu; Cornelia Hardt; Philipp A. Lang; Nadine Honke; Karl S. Lang
Upon infection with persistence-prone virus, type I interferon (IFN-I) mediates antiviral activity and also upregulates the expression of programmed death ligand 1 (PD-L1), and this upregulation can lead to CD8+ T-cell exhaustion. How these very diverse functions are regulated remains unknown. This study, using the lymphocytic choriomeningitis virus, showed that a subset of CD169+ macrophages in murine spleen and lymph nodes produced high amounts of IFN-I upon infection. Absence of CD169+ macrophages led to insufficient production of IFN-I, lower antiviral activity and persistence of virus. Lack of CD169+ macrophages also limited the IFN-I-dependent expression of PD-L1. Enhanced viral replication in the absence of PD-L1 led to persistence of virus and prevented CD8+ T-cell exhaustion. As a consequence, mice exhibited severe immunopathology and died quickly after infection. Therefore, CD169+ macrophages are important contributors to the IFN-I response and thereby influence antiviral activity, CD8+ T-cell exhaustion and immunopathology.
Cellular Physiology and Biochemistry | 2015
Katja Merches; Khairnar; Torben Knuschke; Namir Shaabani; Nadine Honke; Duhan; Mike Recher; Alexander A. Navarini; Cornelia Hardt; Dieter Häussinger; Burkhard Tümmler; Erich Gulbins; Anthony H. Futerman; Hoffmann D; Florian Lang; Pa Lang; Astrid M. Westendorf; Karl S. Lang
Background: Type I interferon (IFN-I) predisposes to bacterial superinfections, an important problem during viral infection or treatment with interferon-alpha (IFN-α). IFN-I-induced neutropenia is one reason for the impaired bacterial control; however there is evidence that more frequent bacterial infections during IFN-α-treatment occur independently of neutropenia. Methods: We analyzed in a mouse model, whether Pseudomonas aeruginosa control is influenced by co-infection with the lymphocytic choriomeningitis virus (LCMV). Bacterial titers, numbers of neutrophils and the gene-expression of liver-lysozyme-2 were determined during a 24 hours systemic infection with P. aeruginosa in wild-type and Ifnar-/- mice under the influence of LCMV or poly(I:C). Results: Virus-induced IFN-I impaired the control of Pseudomonas aeruginosa. This was associated with neutropenia and loss of lysozyme-2-expression in the liver, which had captured P. aeruginosa. A lower release of IFN-I by poly(I:C)-injection also impaired the bacterial control in the liver and reduced the expression of liver-lysozyme-2. Low concentration of IFN-I after infection with a virulent strain of P. aeruginosa alone impaired the bacterial control and reduced lysozyme-2-expression in the liver as well. Conclusion: We found that during systemic infection with P. aeruginosa Kupffer cells quickly controlled the bacteria in cooperation with neutrophils. Upon LCMV-infection this cooperation was disturbed.
Journal of Autoimmunity | 2016
Namir Shaabani; Vishal Khairnar; Vikas Duhan; Fan Zhou; Rita Ferrer Tur; Dieter Häussinger; Mike Recher; Alexei V. Tumanov; Cornelia Hardt; Daniel D. Pinschewer; Urs Christen; Philipp A. Lang; Nadine Honke; Karl S. Lang
The induction of innate and adaptive immunity is essential for controlling viral infections. Limited or overwhelming innate immunity can negatively impair the adaptive immune response. Therefore, balancing innate immunity separately from activating the adaptive immune response would result in a better antiviral immune response. Recently, we demonstrated that Usp18-dependent replication of virus in secondary lymphatic organs contributes to activation of the innate and adaptive immune responses. Whether specific mechanisms can balance innate and adaptive immunity separately remains unknown. In this study, using lymphocytic choriomeningitis virus (LCMV) and replication-deficient single-cycle LCMV vectors, we found that viral replication of the initial inoculum is essential for activating virus-specific CD8(+) T cells. In contrast, extracellular distribution of virus along the splenic conduits is necessary for inducing systemic levels of type I interferon (IFN-I). Although enforced virus replication is driven primarily by Usp18, B cell-derived lymphotoxin beta contributes to the extracellular distribution of virus along the splenic conduits. Therefore, lymphotoxin beta regulates IFN-I induction independently of CD8(+) T-cell activity. We found that two separate mechanisms act together in the spleen to guarantee amplification of virus during infection, thereby balancing the activation of the innate and adaptive immune system.
Scientific Reports | 2016
Vikas Duhan; Vishal Khairnar; Sarah-Kim Friedrich; Fan Zhou; Asmae Gassa; Nadine Honke; Namir Shaabani; Nicole Gailus; Lacramioara Botezatu; Cyrus Khandanpour; Ulf Dittmer; Dieter Häussinger; Mike Recher; Cornelia Hardt; Philipp A. Lang; Karl S. Lang
Clinically used human vaccination aims to induce specific antibodies that can guarantee long-term protection against a pathogen. The reasons that other immune components often fail to induce protective immunity are still debated. Recently we found that enforced viral replication in secondary lymphoid organs is essential for immune activation. In this study we used the lymphocytic choriomeningitis virus (LCMV) to determine whether enforced virus replication occurs in the presence of virus-specific antibodies or virus-specific CD8+ T cells. We found that after systemic recall infection with LCMV-WE the presence of virus-specific antibodies allowed intracellular replication of virus in the marginal zone of spleen. In contrast, specific antibodies limited viral replication in liver, lung, and kidney. Upon recall infection with the persistent virus strain LCMV-Docile, viral replication in spleen was essential for the priming of CD8+ T cells and for viral control. In contrast to specific antibodies, memory CD8+ T cells inhibited viral replication in marginal zone but failed to protect mice from persistent viral infection. We conclude that virus-specific antibodies limit viral infection in peripheral organs but still allow replication of LCMV in the marginal zone, a mechanism that allows immune boosting during recall infection and thereby guarantees control of persistent virus.
Cellular Physiology and Biochemistry | 2014
Britta Kraczyk; Ralph Remus; Cornelia Hardt
Background: Impairment of regulatory T cells (Tregs) in common autoimmune diseases seems likely. However, the extent of Treg deficiency (number, function) or differential susceptibility of T effector cells (Teffs) to suppression is not completely understood. We hypothesize that even in healthy individuals both cell populations are heterogeneous and differ in their suppressive capability and their susceptibility to suppression. Material and Methods: Lymphocytes were enriched by MACS for CD4<sup>+</sup>CD25<sup>+</sup> Tregs or CD4<sup>+</sup>CD25<sup>-</sup> Teffs. After multicolour staining (anti-CD25, anti-CD127, anti-CD49d or anti-CD45RA) highly purified Treg and Teff subpopulations were collected by FACS. Functional capacity of Tregs or suppressive susceptibility of Teffs was analyzed in an in vitro assay. Results: When CD4<sup>+</sup>CD25<sup>high</sup>CD127<sup>-/low</sup> CD49d<sup>-</sup> Tregs were tested on naive CD4<sup>+</sup>CD127<sup>+</sup>CD25<sup>-</sup>CD45RA<sup>+</sup> Teffs (93.8 %) suppression was almost complete, while the suppressive capacity of CD4<sup>+</sup>CD25<sup>high</sup>CD127<sup>-/low</sup> CD49d<sup>+</sup> Tregs was significantly less (71.8 %). Suppressive activity was low when CD4<sup>+</sup>CD25<sup>high</sup>CD127<sup>-/low</sup> CD49d<sup>+</sup> Tregs were analyzed on CD4<sup>+</sup>CD127<sup>+</sup>CD25<sup>-</sup>CD45RA<sup>-</sup> Teffs (48.7%). Conclusion: Although CD49d<sup>+</sup> Tregs are functional, the suppressive capacity is significantly lower compared to CD49d<sup>-</sup> Tregs. CD45RA<sup>+</sup> Teffs can be completely suppressed, while CD45RA<sup>-</sup> Teffs display relative resistance. Phenotypic and functional heterogeneity of Tregs as well as Teffs has to be considered when analyzing deficiencies in immune regulation.
Cellular Physiology and Biochemistry | 2017
Nadine Honke; Namir Shaabani; Cornelia Hardt; Caroline Krings; Dieter Häussinger; Philipp A. Lang; Verena Keitel; Karl S. Lang
Background: Bile acids (BAs) are steroid molecules that are synthesized in the liver. In addition to their important role as a surfactant in solubilizing lipids and promoting the absorption of lipids in the gastrointestinal tract, they act as inflammagens. The role of BAs and their receptor farnesoid X receptor (FXR) during viral infection has not been studied in detail. Methods: By using FXR-deficient mice, we investigated the role of bile acid receptor FXR during infection with lymphocytic choriomeningitis virus (LCMV). The importance of FXR in inducing IFN-I and monocytes proliferation were investigated and viral titers and T cell exhaustion were analyzed at different time points. Results: This study shows that controlled levels of BAs activate FXR in hepatocytes and FXR in response upregulates the production of type I interferon. In turn, FXR maintains BAs within a balanced range to inhibit their toxic effects. The absence of FXR results in high levels of BAs, which inhibit the proliferation of monocytes and result in a defect in viral elimination, consequently leading to T cell exhaustion. Conclusion: We found that FXR contributes to IFN-I production in hepatocytes and balances BA levels to inhibit their toxic effects on monocytes.
Cellular Physiology and Biochemistry | 2016
Asmae Gassa; Fu Jian; Halime Kalkavan; Vikas Duhan; Nadine Honke; Namir Shaabani; Sarah-Kim Friedrich; Sebastian Dolff; Thorsten Wahlers; Andreas Kribben; Cornelia Hardt; Philipp A. Lang; Oliver Witzke; Karl S. Lang
Background/Aims: Unexpected transmissions of viral pathogens during solid organ transplantation (SOT) can result in severe, life-threatening diseases in transplant recipients. Immune activation contributes to disease onset. However mechanisms balancing the immune response against transmitted viral infection through organ transplantation remain unknown. Methods & Results: Here we found, using lymphocytic choriomeningitis virus (LCMV), that transplantation of LCMV infected hearts led to exhaustion of virus specific CD8+ T cells, viral persistence in organs and survival of graft and recipient. Genetic depletion of Interleukin-10 (IL-10) resulted in strong immune activation, graft dysfunction and death of mice, suggesting that IL-10 was a major regulator of CD8+ T cell exhaustion during SOT. In the presence of memory CD8+ T cells, virus could be controlled. However sufficient antiviral immune response resulted in acute rejection of transplanted heart. Conclusion: We found that virus transmitted via SOT could not be controlled by naïve mice recipients due to IL-10 mediated CD8+ T cell exhaustion which thereby prevented immunopathology and graft failure whereas memory mice recipients were able to control the virus and induced graft failure.
Frontiers in Immunology | 2017
Nadine Honke; Namir Shaabani; John R. Teijaro; Urs Christen; Cornelia Hardt; Judith Bezgovsek; Philipp A. Lang; Karl S. Lang
Peripheral tolerance is an important mechanism by which the immune system can guarantee a second line of defense against autoreactive T and B cells. One autoimmune disease that is related to a break of peripheral tolerance is diabetes mellitus type 1. Using the RIP-GP mouse model, we analyzed the role of the spleen and lymph nodes (LNs) in priming CD8+ T cells and breaking peripheral tolerance. We found that diabetes developed in splenectomized mice infected with the lymphocytic choriomeningitis virus (LCMV), a finding showing that the spleen was not necessary in generating autoimmunity. By contrast, the absence of LNs prevented the priming of LCMV-specific CD8+ T cells, and diabetes did not develop in these mice. Additionally, we found that dendritic cells are responsible for the distribution of virus in secondary lymphoid organs, when LCMV was administered intravenously. Preventing this distribution with the sphingosine-1-phosphate receptor antagonist FTY720 inhibits the transport of antigen to peripheral LNs and consequently prevented the onset of diabetes. However, in case of subcutaneous infection, administration of FTY720 could not inhibit the onset of diabetes because the viral antigen is already presented in the peripheral LNs. These findings demonstrate the importance of preventing the presence of antigen in LNs for maintaining tolerance.
Cellular Physiology and Biochemistry | 2016
Asmae Gassa; Halime Kalkavan; Fu Jian; Vikas Duhan; Vishal Khairnar; Namir Shaabani; Nadine Honke; Alexander Carpinteiro; Lacramioara Botezatu; Pietro Crivello; Sebastian Dolff; Stanislav Ferencik; Dieter Häussinger; Cyrus Khandanpour; Katharina Fleischhauer; Oliver Witzke; Thorsten Wahlers; Cornelia Hardt; Philipp A. Lang; Karl S. Lang
Background: Graft versus host disease (GvHD) occurs in 20% of cases with patients having an MHC I matched bone marrow transplantation (BMT). Mechanisms causing this disease remain to be studied. Methods: Here we used a CD8+ T cell transgenic mouse line (P14/CD45.1+) and transgenic DEE mice bearing ubiquitously the glycoprotein 33-41 (GP33) antigen derived from the major lymphocytic choriomeningitis virus (LCMV) epitope to study mechanisms of tolerance in anti-host reactive CD8+ T cells after BMT. Results: We found that anti-host reactive CD8+ T cells (P14 T cells) were not negatively selected in the thymus and that they were present in wild type (WT) recipient mice as well as in DEE recipient mice. Anti-host reactive CD8+ T cells ignored the GP33 antigen expressed ubiquitously by host cells but they could be activated ex vivo via LCMV-infection. Lipopolysaccharides (LPS) induced transient cell damage in DEE mice bearing anti-host reactive CD8+ T cells after BMT, suggesting that induction of host inflammatory response could break antigen ignorance. Introducing the GP33 antigen into BM cells led to deletion of anti-host reactive CD8+ T cells. Conclusion: We found that after BMT anti-host reactive CD8+ T cells ignored host antigen in recipients and that they were only deleted when host antigen was present in hematopoietic cells. Moreover, LPS-induced immune activation contributed to induction of alloreactivity of anti-host reactive CD8+ T cells after BMT.