Cornelia I. Ullrich
Technische Universität Darmstadt
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Cornelia I. Ullrich.
Planta | 2003
Roni Aloni; Katja Schwalm; Markus Langhans; Cornelia I. Ullrich
Abstract. The major regulatory shoot signal is auxin, whose synthesis in young leaves has been a mystery. To test the leaf-venation hypothesis [R. Aloni (2001) J Plant Growth Regul 20: 22–34], the patterns of free-auxin production, movement and accumulation in developing leaf primordia of DR5::GUS-transformed Arabidopsis thaliana (L.) Heynh. were visualized. DR5::GUS expression was regarded to reflect sites of free auxin, while immunolocalization with specific monoclonal antibodies indicated total auxin distribution. The mRNA expression of key enzymes involved in the synthesis, conjugate hydrolysis, accumulation and basipetal transport of auxin, namely indole-3-glycerol-phosphate-synthase, nitrilase, IAA-amino acid hydrolase, chalcone synthase and PIN1 as an essential component of the basipetal IAA carrier, was investigated by reverse transcription–polymerase chain reaction. Near the shoot apex, stipules were the earliest sites of high free-auxin production. During early stages of primordium development, leaf apical dominance was evident from strong β-glucuronidase activity in the elongating tip, possibly suppressing the production of free auxin in the leaf tissues below it. Hydathodes, which develop in the tip and later in the lobes, were apparently primary sites of high free-auxin production, the latter supported by auxin-conjugate hydrolysis, auxin retention by the chalcone synthase-dependent action of flavonoids and also by the PIN1-component of the carrier-mediated basipetal transport. Trichomes and mesophyll cells were secondary sites of free-auxin production. During primordium development there are gradual shifts in sites and concentrations of free-auxin production occurring first in the tip of a leaf primordium, then progressing basipetally along the margins, and finally appearing also in the central regions of the lamina. This developmental pattern of free-auxin production is suggested to control the basipetal maturation sequence of leaf development and vascular differentiation in Arabidopsis leaves. Electronic Supplementary Material is available if you access this article at http://dx.doi.org/10.1007/s00425-002-0937-8. On that page (frame on the left side), a link takes you directly to the supplementary material.
Planta | 2006
Roni Aloni; Erez Aloni; Markus Langhans; Cornelia I. Ullrich
To elucidate the role of auxin in flower morphogenesis, its distribution patterns were studied during flower development in Arabidopsis thaliana (L.) Heynh. Expression of DR5::GUS was regarded to reflect sites of free auxin, while immunolocalization with auxin polyclonal antibodies visualized conjugated auxin distribution. The youngest flower bud was loaded with conjugated auxin. During development, the apparent concentration of free auxin increased in gradual patterns starting at the floral-organ tip. Anthers are major sites of high concentrations of free auxin that retard the development of neighboring floral organs in both the acropetal and basipetal directions. The IAA-producing anthers synchronize flower development by retarding petal development and nectary gland activity almost up to anthesis. Tapetum cells of young anthers contain free IAA which accumulates in pollen grains, suggesting that auxin promotes pollen-tube growth towards the ovules. High amounts of free auxin in the stigma induce a wide xylem fan immediately beneath it. After fertilization, the developing embryos and seeds show elevated concentrations of auxin, which establish their axial polarity. This developmental pattern of auxin production during floral-bud development suggests that young organs which produce high concentrations of free IAA inhibit or retard organ-primordium initiation and development at the shoot tip.
Planta | 2001
Markus Langhans; Rafael Ratajczak; Martin Lützelschwab; Wolfgang Michalke; Rebecca Wächter; Elke Fischer-Schliebs; Cornelia I. Ullrich
Abstract. Plasma-membrane-located primary pumps were investigated in the sieve element (SE)-companion cell complex in the transport phloem of 2-week-old stems of Ricinus communis L. and, for comparison, in stems of Cucurbita pepo L. and in the secondary phloem of Agrobacterium tumefaciens-induced crown galls as a typical sink tissue. The plasma-membrane (PM) H+-ATPase and the tonoplast-type pyrophosphatase (PPase) were immunolocalized by epifluorescence and confocal laser scanning microscopy (CLSM) upon single or double labeling with specific monoclonal and polyclonal antibodies. Quantitative fluorescence evaluation by CLSM revealed both pumps in one membrane, the sieve-element PM. Different PM H+-ATPase antibody clones, raised against the PM H+-ATPase of Zea mays coleoptiles, induced in mouse and produced in mouse hybridoma cells, discriminated between different phloem cell types. Clones 30D5C4 and 44B8A1 labeled sieve elements and clone 46E5B11D5 labeled companion cells, indicating the existence of different phloem PM H+-ATPase isoforms. The results are discussed in terms of energization of SE transporters for retrieval of leaking sucrose, K+ and amino acids, as one of the unknown roles of ATP found in SEs. The function of the PPase could be related to phloem sucrose metabolism in support of ATP-requiring processes.
Plant Physiology | 2003
Rebecca Wächter; Markus Langhans; Roni Aloni; Simone Götz; Anke Weilmünster; Ariane Koops; Leopoldine Temguia; Igor Mistrík; Ján Pavlovkin; Uwe Rascher; Katja Schwalm; Karen E. Koch; Cornelia I. Ullrich
Vascular differentiation and epidermal disruption are associated with establishment of tumors induced by Agrobacterium tumefaciens. Here, we address the relationship of these processes to the redirection of nutrient-bearing water flow and carbohydrate delivery for tumor growth within the castor bean (Ricinus communis) host. Treatment with aminoethoxyvinyl-glycine showed that vascular differentiation and epidermal disruption were central to ethylene-dependent tumor establishment. CO2 release paralleled tumor growth, but water flow increased dramatically during the first 3 weeks. However, tumor water loss contributed little to water flow to host shoots. Tumor water loss was followed by accumulation of the osmoprotectants, sucrose (Suc) and proline, in the tumor periphery, shifting hexose-to-Suc balance in favor of sugar signals for maturation and desiccation tolerance. Concurrent activities and sites of action for enzymes of Suc metabolism changed: Vacuolar invertase predominated during initial import of Suc into the symplastic continuum, corresponding to hexose concentrations in expanding tumors. Later, Suc synthase (SuSy) and cell wall invertase rose in the tumor periphery to modulate both Suc accumulation and descending turgor for import by metabolization. Sites of abscisic acid immunolocalization correlated with both central vacuolar invertase and peripheral cell wall invertase. Vascular roles were indicated by SuSy immunolocalization in xylem parenchyma for inorganic nutrient uptake and in phloem, where resolution allowed SuSy identification in sieve elements and companion cells, which has widespread implications for SuSy function in transport. Together, data indicate key roles for ethylene-dependent vascularization and cuticular disruption in the redirection of water flow and carbohydrate transport for successful tumor establishment.
Planta | 2003
Katja Schwalm; Roni Aloni; Markus Langhans; Werner Heller; Susanne Stich; Cornelia I. Ullrich
Agrobacterium tumefaciens-induced plant tumors accumulate considerable concentrations of free auxin. To determine possible mechanisms by which high auxin concentrations are maintained, we examined the pattern of auxin and flavonoid distribution in plant tumors. Tumors were induced in transformants of Trifolium repens (L.), containing the β-glucuronidase (GUS)-fused auxin-responsive promoter (GH3) or chalcone synthase (CHS2) genes, and in transformants of Arabidopsis thaliana (L.) Heynh., containing the GUS-fused synthetic auxin response element DR5. Expression of GH3::GUS and DR5::GUS was strong in proliferating metabolically active tumors, thus suggesting high free-auxin concentrations. Immunolocalization of total auxin with indole-3-acetic acid antibodies was consistent with GH3::GUS expression indicating the highest auxin concentration in the tumor periphery. By in situ staining with diphenylboric acid 2-aminoethyl ester, by thin-layer chromatography, reverse-phase high-performance liquid chromatography, and two-photon laser-scanning microscopy spectrometry, tumor-specific flavones, isoflavones and pterocarpans were detected, namely 7,4′-dihydroxyflavone (DHF), formononetin, and medicarpin. DHF was the dominant flavone in high free-auxin-accumulating stipules of Arabidopsis leaf primordia. Flavonoids were localized at the sites of strongest auxin-inducible CHS2::GUS expression in the tumor that was differentially modulated by auxin in the vascular tissue. CHS mRNA expression changes corresponded to the previously analyzed auxin concentration profile in tumors and roots of tumorized Ricinus plants. Application of DHF to stems, apically pretreated with α-naphthaleneacetic acid, inhibited GH3::GUS expression in a fashion similar to 1-N-naphthyl-phthalamic acid. Tumor, root and shoot growth was poor in inoculated tt4(85) flavonoid-deficient CHS mutants of Arabidopsis. It is concluded that CHS-dependent flavonoid aglycones are possibly endogenous regulators of the basipetal auxin flux, thereby leading to free-auxin accumulation in A. tumefaciens-induced tumors. This, in turn, triggers vigorous proliferation and vascularization of the tumor tissues and suppresses their further differentiation.
Planta | 1999
Claudia Rezmer; Ralf Schlichting; Rebecca Wächter; Cornelia I. Ullrich
Abstract.Agrobacterium tumefaciens-induced tumors of dicotyledonous plants consist of well-defined vascular bundle-like structures originating from transformed cells. The current view that 25% of the tumor cells are transformed has been re-investigated by using β-glucuronidase (gus)-gene-containing wild-type bacteria (A281 p35S gus-int). Regularly growing stem and leaf tumors showed irregular GUS-staining patterns in the different plant species, Ricinus communis L., Cucurbita maxima L., Vicia faba L. and Kalanchoë daigremontiana Hamet et Perrier. Variable staining and inconsistency between staining and tumor growth suggested an inhibition of gus expression. By polymerase chain reaction (PCR) and reverse transcriptase-PCR analyses it became evident that gus is also integrated into the DNA of unstainable tumor parts but not expressed. These results and area calculations of tissues unable to contain the bacterial transferred-DNA with gus provide strong evidence that in A. tumefaciens-induced tumors most cells, or even all, are transformed, i.e. ca. 100%.
Plant and Soil | 2000
Igor Mistrík; Ján Pavlovkin; Rebecca Wächter; Katja S. Pradel; Katja Schwalm; Wolfram Hartung; Ulrike Mathesius; Christine Stöhr; Cornelia I. Ullrich
Developing tumors induced by Agrobacterium tumefaciens, strain C58, on stems of Ricinus communis L. var. gibsonii cv. Carmencita were shown to be strong metabolic sinks for sucrose and amino acids, thus causing higher nutrient demand in the host plant. However, NO3− uptake and, to a lesser extent, also H2PO4− uptake were strongly inhibited. Correspondingly, NO3− concentration was lower in tumorised than in the control plants. NO3−reductase activity was the same in both plant types, but it was completely suppressed in the tumors. The electrical membrane potential difference of root cells was unaffected in tumorised plants when soil-grown, but significantly lowered when grown hydroponically. Consistent with the low NO3− uptake rate, NO3−-dependent membrane depolarisation at the onset of NO3−/2H+-cotransport was nearly zero. In the phloem sap, sucrose and amino acid concentrations were considerably lower in tumorised than in control plants, and lower below than above the tumor. The qualitative pattern of amino acids of the phloem sap of stems was almost the same in tumorised and control plants. It is concluded that neither the overall amino acid concentration nor special amino acids nor ammonium in the transport phloem suppress NO3− uptake in the roots. Aminocyclopropane-carboxylate, the precursor of ethylene, which is produced in the tumors in high amounts, was low in the stems and the same in both plant types. Thus, ACC and ethylene were ruled out as directly interfering with nutrient uptake in the roots. Root morphology was strongly affected during tumor development. Root fresh weight decreased to 50% of the controls and lateral root development was almost completely prevented. This suggests that the high tumor ethylene production, together with an increasing concentration of phenolic compounds, severely inhibits the basipetal auxin flow to the roots. Auxin accumulation and retention was confirmed by specifically enhanced expression of the auxin-responsive promoter of the soybean gene GH3:GUS in tumors induced in transgenic Trifolium repens L. Hence, root development is poorer and anion uptake inhibited in tumorised plants. This may be aggravated by abscisic acid accumulation in the tumor and its basipetal export into the roots. Moreover, sucrose depletion of the sieve tubes leads to energy shortage at the root level for maintaining energy-dependent anion uptake.
Annals of Botany | 2006
Roni Aloni; Erez Aloni; Markus Langhans; Cornelia I. Ullrich
Journal of Experimental Botany | 2005
Roni Aloni; Markus Langhans; Erez Aloni; Ellen Dreieicher; Cornelia I. Ullrich
Plant Physiology | 1990
Cornelia I. Ullrich; Anton Novacky