Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cornelia Irene Hagl is active.

Publication


Featured researches published by Cornelia Irene Hagl.


International Journal of Colorectal Disease | 2006

Isolation and cultivation of neuronal precursor cells from the developing human enteric nervous system as a tool for cell therapy in dysganglionosis

Ulrich Rauch; Andrea Hänsgen; Cornelia Irene Hagl; Stefan Holland-Cunz; Karl-Herbert Schäfer

BackgroundThe human enteric nervous system (ENS) descends from migrating neural crest cells (NCC) and is structured into different plexuses embedded in the gastrointestinal tract wall. The development of this entity strongly depends on the supply of an appropriate support with trophic factors during organogenesis. The lack of important factors, such as glial cell line-derived neurotrophic factor, leads to severe disturbances in the ENS and, thus, to motility disorders in children. The isolation of neuronal precursor cells as well as their transplantation after expansion in vitro is therefore a hopeful new approach concerning all forms of dysganglionosis in children.MethodsWe therefore established a way to isolate and expand precursor cells from the developing and postnatal human ENS. Bowel samples were obtained from human fetuses and children (from the 9th week of gestation to 5 years postnatal). Myenteric plexus was isolated by enzymatical digestion and cultivated until spheroid aggregates, the so-called neurospheres, developed. These neurospheres could be differentiated and also be transplanted after dissociation into aganglionic bowel in vitro.ResultsEnteric neurospheres could be grown from different gestational ages, including postmortem material. Undifferentiated proliferating precursor cells were kept in culture for up to 72 days and could be differentiated in neurons and glial cells in vitro.ConclusionThe first results using isolated enteric neurospheres in aganglionic bowel are quite promising and are a basis to develop an appropriate cell therapy for all kinds of dysganglionosis, especially for cases where a surgical approach is not sufficient or not even possible.


Pediatric Surgery International | 2003

Differentiation of neurospheres from the enteric nervous system.

Karl-Herbert Schäfer; Cornelia Irene Hagl; Ulrich Rauch

The enteric nervous system (ENS) derives from neural crest cells, which migrate from the neural tube into the developing gut. The neuronal and glial precursor cells migrate mainly from the oral towards the anal end of the gastrointestinal tract. So far, knowledge about the multipotent influences upon the ENS development, especially its neurotrophic support, derives mainly from knock-out models. The in vitro technique of isolating enteric neuronal precursor cells allows to study the effects of various factors upon their appropriate development in more detail. We therefore adapted the method of growing neurospheres, which are agglomerates of neuronal precursor cells and differentiated neurones and glial cells, from the central nervous system (CNS) for the ENS. The gut of NMRI mice at E12 were dissected, mildly dissociated and plated in 25-cm2 culture flasks. The cultures were maintained in N1 supplemented DMEM/F12 medium with the appropriate neurotrophin cocktails (bFGF, GDNF, Neurturin, CNTF). After several days in culture most of the cells die, while the surviving cells form clusters from which domes, and later spheres arise. The spheres could be harvested and processed for further experiments. First investigations revealed, that the amount of precursor cells was much less in enteric neurospheres as seen in corresponding cultures from the CNS. We found about 43% HNK-1-NCAM+ in enteric and approximately 90% Nestin-+ cells in midbrain neurospheres. Differentiation studies of the enteric neurospheres showed that especially ciliary neurotrophic factor (CNTF) increased the number of enteric neurones (PGP positive), while the amount of HNK-1 precursor cells decreased under the influence of all tested neurotrophins but GDNF. The culture of the freshly dissociated enteric neurospheres in a three-dimensional matrix yielded a secondary network which allows to investigate the pattern formation of the ENS. The generation of enteric neurospheres and the following differentiation and 3D culture in vitro can increase our knowledge of the amount and time point of neurotrophic as well as the ECM-protein influence upon the appropriate development of the ENS.


Journal of Histochemistry and Cytochemistry | 2006

Expression of Intermediate Filament Proteins and Neuronal Markers in the Human Fetal Gut

Ulrich Rauch; Markus Klotz; Silke Maas-Omlor; Elvira Wink; Andrea Hänsgen; Cornelia Irene Hagl; Stefan Holland-Cunz; Karl-Herbert Schäfer

The human enteric nervous system (ENS) derives from migrating neural crest cells (NCC) and is structured into different plexuses embedded in the gastrointestinal tract wall. During development of the NCC, a rearrangement of various cytoskeletal intermediate filaments such as nestin, peripherin, or alpha-internexin takes place. Although all are related to developing neurons, nestin is also used to identify neural stem cells. Until now, information about the prenatal development of the human ENS has been very restricted, especially concerning potential stem cells. In this study the expression of nestin, peripherin, and alpha-internexin, but also of neuronal markers such as protein gene product (PGP) 9.5 and tyrosine hydroxylase, were investigated in human fetal and postnatal gut. The tissue samples were rapidly removed and subsequently processed for immunohistochemistry or immunoblotting. Nestin could be detected in all samples investigated with the exception of the 9th and the 12th week of gestation (WOG). Although the neuronal marker PGP9.5 was coexpressed with nestin at the 14th WOG, this could no longer be observed at later time points. Alpha-internexin and peripherin expression also did not appear before the 14th WOG, where they were coexpressed with PGP9.5. This study reveals that the intermediate filament markers investigated are not suitable to detect early neural crest stem cells.


PLOS ONE | 2013

The human gastrointestinal tract, a potential autologous neural stem cell source.

Cornelia Irene Hagl; Sabine Heumüller-Klug; Elvira Wink; Lucas M. Wessel; Karl-Herbert Schäfer

Stem cell therapies seem to be an appropriate tool for the treatment of a variety of diseases, especially when a substantial cell loss leads to a severe clinical impact. This is the case in most neuronal cell losses. Unfortunately, adequate neural stem cell sources are hard to find and current alternatives, such as induced programmed stem cells, still have incalculable risks. Evidence of neurogenesis in the adult human enteric nervous system brought up a new perspective. In humans the appendix harbors enteric neuronal tissue and is an ideal location where the presence of neural stem cells is combined with a minimal invasive accessibility. In this study appendices from adults and children were investigated concerning their neural stem cell potential. From each appendix tissue samples were collected, and processed for immunohistochemistry or enteric neural progenitor cell generation. Free-floating enteric neurospheres (EnNS’s) could be generated after 6 days in vitro. EnNS’s were either used for transplantation into rat brain slices or differentiation experiments. Both transplanted spheres and control cultures developed an intricate network with glia, neurons and interconnecting fibers, as seen in primary enteric cultures before. Neuronal, glial and neural stem cell markers could be identified both in vitro and in vivo by immunostaining. The study underlines the potential of the enteric nervous system as an autologous neural stem cell source. Using the appendix as a potential target opens up a new perspective that might lead to a relatively unproblematic harvest of neural stem cells.


International Journal of Colorectal Disease | 2012

The microenvironment in the Hirschsprung's disease gut supports myenteric plexus growth.

Cornelia Irene Hagl; Ulrich Rauch; Markus Klotz; Sabine Heumüller; David Grundmann; Sabrina Ehnert; Ulrike Subotic; Stefan Holland-Cunz; Karl-Herbert Schäfer

IntroductionThe transplantation of neural crest derived stem cells (NCSC) is a potent alternative for the treatment of Hirschsprungs disease (HSCR). Cells to be transplanted should find an appropriate microenvironment to survive and differentiate. Influences of HSCR-smooth-muscle-protein extracts upon isolated myenteric plexus cells, dissociated dorsal root ganglia and NCSC were studied in vitro to investigate the quality of this microenvironment effects.MethodsPostnatal human gut from children undergoing colonic resection due to HSCR was divided in segments. Smooth muscle was dissected and homogenized. Glial-cell-line-derived-neurotrophic-factor (GDNF) and transforming-growth-factor-β-1 (TGFβ-1) concentration were measured in the homogenates from the individual segment using ELISA. Myenteric plexus and dissociated dorsal root ganglia (DRG) cultures, as well as NCSCs were exposed to protein extracts derived from ganglionic and aganglionic HSCR segments, and their effect upon neurite outgrowth, survival, and branching was evaluated.Results and conclusionsThe amount of the factors varied considerably between the individual segments and also from patient to patient. Four major expression patterns could be detected. While all extracts tested lead to a significant increase in neurite outgrowth compared to the control, extracts from proximal segments tended to have more prominent effects. In one experiment, extracts from all individual segments of a single patient were tested. Neurite outgrowth, neuronal survival, and branching pattern varied from segment to segment, but all HSCR-muscle-protein extracts increased neuronal survival and network formation. Smooth muscle protein from aganglionic bowel supports the survival and outgrowth of myenteric neurons and NCSCs and is so an appropriate target for neural stem cell treatment.


Pediatric Surgery International | 2008

Temporal and regional morphological differences as a consequence of FGF-2 deficiency are mirrored in the myenteric proteome

Cornelia Irene Hagl; Markus Klotz; Elvira Wink; K. Kränzle; Stefan Holland-Cunz; N. Gretz; Martin Diener; Karl-Herbert Schäfer

The enteric nervous system with its intricate network of neurons and glia shows a high plasticity, which not only changes during pre- and postnatal development, but also with disease or changing dietary habits. FGF as a potent neurotrophic factor in the central nervous system might also play a specific role for the ENS development, FGF-2 knockout and corresponding wild-type mice were histologically and functionally analyzed. FGF-2 knockout mice are viable and thrive normally and do apparently not display any obvious neurological deficit. Morphological differences were studied on whole mount preparations of muscle and submucous layer using either cuprolinic blue or immunohistochemical stainings for the neuronal marker PGP 9.5. Ussing-chamber and isometric muscle contraction experiments were performed on isolated gut wall, respectively muscle preparations. Intravital microscopy with GFP-transfected E. coli bacteria was used to investigate influences upon bacterial translocation. In additional experiments the protein pattern of the isolated myenteric plexus of knockout and wild-type mice were compared using 2D-DIGE technology. The morphometric analysis of the myenteric plexus revealed significant differences between FGF-2 knockout and wild-type animals, resulting in larger neurons in the knock out animals, embedded in less densely packed enteric ganglia. While muscle contractility appeared not to be affected, there was a significant difference in bacterial translocation as well as differences in basal chloride secretion to be seen. The observed morphological differences were reflected in the varying protein patterns, which were revealed by 2D-DIGE. A large number of differentially expressed proteins were found in both colonic and duodenal samples. FGF obviously influences the development of well established gastrointestinal functions by various means, thus leading to minor but significant deficiencies. Whether the revealed deficits in the mucous barrier are indebted to the morphological alterations in the ENS cannot yet be proved, but is very likely.


Neurogastroenterology and Motility | 2013

Expression and function of the Transforming Growth Factor-b system in the human and rat enteric nervous system.

Cornelia Irene Hagl; Karl-Herbert Schäfer; Ines Hellwig; Martina Barrenschee; Jonas Harde; M. Holtmann; S. Porschek; Jan-Hendrik Egberts; Thomas Becker; Thilo Wedel; Martina Böttner

Transforming growth factor‐betas (TGF‐bs) are pleiotropic growth factors exerting neurotrophic functions upon various neuronal populations of the central nervous system. In contrast, the role of TGF‐b isoforms in the enteric nervous system (ENS) is largely unknown. We therefore analyzed the gene expression pattern of the TGF‐b system in the human colon and in rat myenteric plexus, and smooth muscle cell cultures and determined the effect of TGF‐b isoforms on neuronal differentiation.


World Journal of Gastroenterology | 2015

Degradation of intestinal mRNA: A matter of treatment

Sabine Heumüller-Klug; Carsten Sticht; Karin Kaiser; Elvira Wink; Cornelia Irene Hagl; Lucas M. Wessel; Karl-Herbert Schäfer

AIM To characterize the influence of location, species and treatment upon RNA degradation in tissue samples from the gastrointestinal tract. METHODS The intestinal samples were stored in different medium for different times under varying conditions: different species (human and rat), varying temperature (storage on crushed ice or room temperature), time point of dissection of the submucous-mucous layer from the smooth muscle (before or after storage), different rinsing methods (rinsing with Medium, PBS, RNALater or without rinsing at all) and different regions of the gut (proximal and distal small intestine, caecum, colon and rectum). The total RNA from different parts of the gut (rat: proximal and distal small intestine, caecum, colon and rectum, human: colon and rectum) and individual gut layers (muscle and submucosal/mucosal) was extracted. The quality of the RNA was assessed by micro capillary electrophoresis. The RNA quality was expressed by the RNA integrity number which is calculated from the relative height and area of the 18 S and 28 S RNA peaks. From rat distal small intestine qPCR was performed for neuronal and glial markers. RESULTS RNA obtained from smooth muscle tissue is much longer stable than those from submucosal/mucosal tissue. At RT muscle RNA degrades after one day, on ice it is stable at least three days. Cleaning and separation of gut layers before storage and use of RNALater, maintains the stability of muscle RNA at RT for much longer periods. Different parts of the gut show varying degradation periods. RNA obtained from the submucosal/mucosal layer always showed a much worse amplification rate than RNA from muscle tissue. In general RNA harvested from rat tissue, either smooth muscle layer or submucosal/mucosal layer is much longer stable than RNA from human gut tissue, and RNA obtained from smooth muscle tissue shows an increased stability compared to RNA from submucosal/mucosal tissue. At RT muscle RNA degrades after one day, while the stability on ice lasts at least three days. Cleaning and separation of gut layers before storage and use of RNALater, maintains the stability of muscle RNA at RT for much longer periods. Different parts of the gut show varying degradation periods. The RNA from muscle and submucosal/mucosal tissue of the proximal small intestine degrades much faster than the RNA of distal small intestine, caecum or colon with rectum. RNA obtained from the submucosal/mucosal layer always showed a much more reduced amplification rate than RNA from muscle tissue [β-Tubulin III for muscle quantification cycle (Cp): 22.07 ± 0.25, for β-Tubulin III submucosal/mucosal Cp: 27.42 ± 0.19]. CONCLUSION Degradation of intestinal mRNA depends on preparation and storage conditions of the tissue. Cooling, rinsing and separating of intestinal tissue reduce the degradation of mRNA.


Pediatric Surgery International | 2012

Smooth muscle proteins from Hirschsprung’s disease facilitates stem cell differentiation

Cornelia Irene Hagl; Sabine Heumüller; Markus Klotz; Ulrike Subotic; Lucas M. Wessel; Karl-Herbert Schäfer

Background and aimsThe transplantation of neural crest derived stem cells (NCSC’s) is a potent alternative for the treatment of Hirschsprung’s disease (HSCR). Cells to be transplanted should find an appropriate microenvironment to survive and differentiate. To investigate the quality of this microenvironment, effects of HSCR-smooth-muscle-protein extracts upon NCSC’s were studied in vitro.MethodsPostnatal human gut from children undergoing colonic resection due to HSCR was divided in segments. Smooth muscle was dissected and homogenized. Glial-cell-line-derived-neurotrophic-factor (GDNF) concentration was measured in the homogenates from the individual segment using ELISA. NCSC’s were exposed to protein extracts derived from ganglionic and aganglionic HSCR segments, and their effect upon neurite outgrowth, survival and branching was evaluated.ResultsThe amount of the factors varied considerably between the proximal and distal segments, and also from patient to patient. While extracts from proximal segments tended to have more prominent effects, all HSCR-muscle-protein extracts increased neuronal survival and network formation.ConclusionMuscle protein from aganglionic bowel supports the survival and outgrowth of NCSC’s and is so an appropriate target for neural stem cell treatment.


Pediatric Surgery International | 2004

Three-dimensional co-culture model of enterocytes and primary enteric neuronal tissue

Stefan Holland-Cunz; S. Bainczyk; Cornelia Irene Hagl; Elvira Wink; Thilo Wedel; W. Back; Karl-Herbert Schäfer

AimThe aim of this study was to establish a three-dimensional model of the innervated mucosal barrier using a co-culture of an enterocyte cell line and enteric glial and nerve cells. Such a model might form the basis for further studies of interactions between the single compartments of the bowel wall, as well as of extrinsic influences on intestinal development and plasticity.MethodsIsolated and dissociated myenteric plexus was resuspended in either collagen or extracellular matrix (ECM) solutions. After incubation at 37°C the solution gelled and formed stable plugs where neurons and glial cells reaggregated to form secondary neuronal networks. HT-29-enterocytes were seeded on top of the gels either immediately (collagen, ECM), or after adding a thin layer of collagen II (ECM).ResultsWhile the neuronal tissue formed complex networks within the gel, the enterocytes on top of the gels grew differently depending on the substrate and innervation. So enterocytes on ECM gels did not grow to confluence, while on collagen gels or on ECM plus collagen larger patches and increasing confluence could be observed. In general HT-29 grew better on innervated gels than on gels with no neuronal tissue.ConclusionsWith the presented model of different compartments of the bowel wall, various parameters of intercellular dependencies and influences can be observed in vitro. Moreover, the first results are also steps towards developing an innervated gut wall in vitro which might be able to restore functional capacity in infants with short bowel syndrome or other disorders that severely impair bowel function.

Collaboration


Dive into the Cornelia Irene Hagl's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

N. Gretz

Heidelberg University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge