Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cornelia Lundblad is active.

Publication


Featured researches published by Cornelia Lundblad.


Journal of Neurotrauma | 2009

Hemodynamic and Histological Effects of Traumatic Brain Injury in eNOS-Deficient Mice

Cornelia Lundblad; Per-Olof Grände; Peter Bentzer

Microvascular dysfunction in the brain, characterized by vasoconstriction, vascular occlusion, and disruption of the blood brain barrier, may adversely affect outcome following traumatic brain injury (TBI). Because of its vasodilating and antiaggregative properties, nitric oxide (NO) produced by nitric oxide synthase in the endothelium (eNOS) is a key regulator of vascular homeostasis. The objective of the present study was to evaluate the role of eNOS in vascular disturbances and histological outcome in the brain following TBI. Cortical blood flow ([(14)C]-iodoantipyrine technique), number of perfused capillaries (FITC-dextran technique), brain water content (wet vs. dry weight), and the transfer constant (K(i)) for [(51)Cr]-EDTA, reflecting permeability, were analyzed 3 h and 24 h after a controlled cortical impact injury (CCI) in eNOS-deficient (eNOS-KO) and wild-type (WT) mice. Cortical contusion volume and cell count in the hippocampus were evaluated 3 weeks after injury. Blood flow in the injured cortex decreased in both groups following trauma. There were no significant differences between the groups at 3 h, but blood flow was lower in eNOS-KO mice than in WT mice 24 h after trauma. Brain water content was higher in the WT mice than in eNOS-KO mice at 24 h. Number of perfused capillaries, K(i), and histological outcome were similar in both groups. We conclude that eNOS is important for maintenance of cerebral blood flow after trauma and that eNOS promotes edema formation by mechanisms other than increased permeability. The vascular effects of eNOS do not, however, influence histological outcome.


Journal of Cerebral Blood Flow and Metabolism | 2008

Increased Cortical Cell Loss and Prolonged Hemodynamic Depression after Traumatic Brain Injury in Mice Lacking the IP Receptor for Prostacyclin

Cornelia Lundblad; Per-Olof Grände; Peter Bentzer

Prostacyclin is the major arachidonic acid metabolite of the vascular endothelium and is produced mainly via the cyclooxygenase-2 pathway. By acting on the prostacyclin (IP) receptor on platelets and vascular smooth muscle cells, prostacyclin exerts vasodilatory and antiaggregative/antiadhesive effects. Previous studies have shown that prostacyclin production increases after brain trauma, but the importance of prostacyclin for posttraumatic hemodynamic alterations and neuron survival has not been investigated. This study evaluated if endogenous prostacyclin plays a role in the pathophysiologic process in the brain after brain trauma. This was performed by comparing prostacyclin (IP) receptor-deficient (IP−/−) mice and mice with functional IP receptor (IP+/+) after a controlled cortical injury regarding contusion volume, cerebral blood flow ([14C]iodoantipyrine autoradiography), number of perfused capillaries (fluorescein isothiocyanate-dextran fluorescence technique), the transfer constant (Ki) for [51Cr]EDTA, and brain water content (wet vs dry weight) in the injured and contralateral cortex. Contusion volume was increased in IP−/− mice compared with IP+/+ mice. Three hours after trauma, cortical blood flow was decreased in the injured cortex of both groups and the reduction in blood flow in the cortex of the IP−/− mice persisted from 3 to 24 h, whereas blood flow approached normal values in the IP+/+ mice after 24 h. No differences could be detected between the two genotypes regarding other hemodynamic parameters. We conclude that the prostacyclin IP receptor is beneficial for neuron survival after brain trauma in mice, an effect that may be mediated by improved cortical perfusion.


Acta Anaesthesiologica Scandinavica | 2013

Treatment with the sphingosine-1-phosphate analogue FTY 720 reduces loss of plasma volume during experimental sepsis in the rat.

Cornelia Lundblad; Helén Axelberg; Per-Olof Grände

Increased vascular leakage leading to hypovolaemia and tissue oedema is common in severe sepsis. Hypovolaemia together with oedema formation may contribute to hypoxia and result in multiorgan failure and death. To improve treatment during sepsis, a potential therapeutic target may be to reduce the vascular leakage. Substances affecting the endothelial barrier are interesting in this respect, as it is suggested that increase in vascular leakage depends on reorganisation of the endothelial cells and breakdown of the endothelial barrier. The agonist of the bioactive lipid sphingosine‐1‐phosphate, FTY720, has been shown to modulate the integrity of the endothelium and reduce permeability both in vitro and in vivo. The aim of the present study was to determine if FTY720 could reduce the loss of plasma volume during experimental sepsis in rats.


Journal of Neurotrauma | 2004

A Mouse Model for Evaluation of Capillary Perfusion, Microvascular Permeability, Cortical Blood Flow, and Cortical Edema in the Traumatized Brain

Cornelia Lundblad; Per-Olof Grände; Peter Bentzer

Genetically engineered mice have successfully been used to investigate molecular and cellular mechanisms associated with cell dysfunction following brain trauma. Such animals may also offer a possibility to investigate mechanisms involved in posttraumatic hemodynamic alterations. The objective of the study was to establish a mouse model in which important hemodynamic alterations following trauma could be analyzed. C57/BL6 male mice were subjected to controlled cortical impact injury (CCI) or sham-injury. Distribution of blood flow was estimated by determining number of perfused capillaries using FITC-dextran as an intravascular marker. Cortical blood flow was measured using [(14)C]-iodoantipyrine, brain water content (BWC) was measured using a wet vs. dry weight method, and permeability surface area product (PS) was estimated by the transfer constant for [(51)Cr]-EDTA. Number of perfused capillaries in the contusion area was progressively reduced during the first 24 h following trauma by at most 60% relative to a value of 329 +/- 61/mm(2) in sham-injured animals. Blood flow in the contusion area decreased simultaneously by at most 50% relative to a control value of 1.8 +/- 0.4 mL.min(-1).g(-1), and was reduced further in subregions within the contusion area. BWC in the injured hemisphere increased from 79.3 +/- 0.5% at control to at most 79.9 +/- 0.6% at 24 h post trauma. PS in the injured hemisphere increased by 71% at 3 h post trauma relative to a control value of 0.45 +/- 0.1 microL.min(-1).g(-1), and was close to control at 24 h. The present study demonstrates that brain trauma in addition to a reduction in cortical blood flow, reduces number of perfused capillaries, which most likely affects exchange of nutrients and fluid. The CCI in mouse is likely to be a useful tool to elucidate mechanisms involved in hemodynamic alterations following brain trauma.


Shock | 2010

A model for evaluating the effects of blunt skeletal muscle trauma on microvascular permeability and plasma volume in the rat.

Peter Bansch; Cornelia Lundblad; Per-Olof Grände; Peter Bentzer

The objective of the present study was to develop an experimental model suitable for studying the effects of a nonhemorrhagic soft tissue trauma on plasma volume (PV) and microvascular permeability. Anesthetized Sprague-Dawley rats were exposed to a sham procedure or a laparotomy followed by a standardized trauma to the abdominal rectus muscle. We evaluated the effects of trauma on transcapillary escape rate and on PV (3 h after trauma) using 125I-albumin as tracer and on edema formation in the traumatized muscle with a wet- versus dry-weight method. The effects of the trauma on the cytokines IFN-&ggr;, IL-4, IL-6, IL-10, and TNF-&agr; were investigated 1 and 3 h after trauma in a separate group. Transcapillary escape rate was 13.9% per hour in the sham animals compared with 18.5% per hour in the traumatized animals (P < 0.05). Because arterial and venous blood pressures were not altered by the trauma, the change in transcapillary escape rate most likely reflects a change in microvascular permeability. Plasma volume decreased from 42 mL/kg at baseline to 31 mL/kg at the end of the experiments (P < 0.05) in the trauma group, whereas PV remained unchanged in the sham group. Only 15% of the PV loss could be referred to edema in the traumatized muscle. Trauma induced a significant increase in IL-6 and IL-10 after 1 h. We conclude that the present nonhemorrhagic trauma induces an increase in microvascular permeability in the traumatized tissue and in other parts of the body, resulting in hypovolemia. The model may be used for the evaluation of different therapeutic interventions aimed at the correction of hypovolemia.


Microvascular Research | 2013

Rosuvastatin in Experimental Brain Trauma: Improved Capillary Patency but no Effect on Edema or Cerebral Blood Flow.

Mårten Jungner; Cornelia Lundblad; Peter Bentzer

BACKGROUND Microvascular dysfunction, characterized by edema formation secondary to increased blood-brain barrier (BBB) permeability and decreased blood flow, contributes to poor outcome following brain trauma. Recent studies have indicated that statins may counteract edema formation following brain trauma but little is known about other circulatory effects of statins in this setting. The objective of this study was to investigate whether statin treatment improves brain microcirculation early after traumatic brain injury, and whether microvascular effects are associated with altered production of nitric oxide and prostacyclin. METHODS After fluid percussion injury, rats were randomized to intravenous treatment with 20mg/kg of rosuvastatin or vehicle. Brain edema (wet/dry weight), BBB integrity ((51)Cr-EDTA blood to brain transfer), cerebral blood flow ((14)C-iodoantipyrine autoradiography), and number of perfused cortical capillaries (FITC-albumin fluorescence microscopy), were measured at 4 and 24h. NO and prostacyclin production was estimated from plasma concentration of the degradation products NO2- and NO3- (NOx) and 6-keto-PGF1-alpha, respectively. Sham injured animals were treated with vehicle and analyzed at 4h. RESULTS Trauma resulted in brain edema, BBB dysfunction, and reduced cortical blood flow, with no effect of statin treatment. Trauma also induced a reduction in the number of perfused capillaries, which was improved by statin treatment. Statin treatment led to increased NOx levels and reduced mean arterial blood pressure. 6-Keto-PGF1-alpha levels tended to increase after trauma, and were significantly reduced by rosuvastatin. CONCLUSIONS Rosuvastatin treatment may improve microcirculation after traumatic brain injury by preserved patency of cerebral capillaries. This effect is associated with increased NO and reduced prostacyclin production. No effect on brain edema or BBB integrity was found.


Microvascular Research | 2003

Inhibition of Rho kinase decreases hydraulic and protein microvascular permeability in cat skeletal muscle.

Cornelia Lundblad; Peter Bentzer; Per-Olof Grände

Rho-associated kinases are involved in regulation of actin-myosin contractility and the organization of the actin cytoskeleton in both endothelial and smooth muscle cells. By influencing the contraction of the intraendothelial filaments, Rho kinases may affect the size of the interendothelial gaps and thereby influence microvascular permeability. The aim of the study was therefore to investigate whether Rho kinases influence hydraulic and protein microvascular permeability. The study was performed on the autoperfused cat skeletal muscle. A capillary filtration coefficient (CFC) technique was used to evaluate changes in hydraulic permeability, and protein permeability was evaluated by estimation of the change in the reflection coefficient for albumin. In the first part of each experiment, the effects on CFC of three doses of the Rho kinase inhibitor Y-27632 of about 0.35, 0.70, and 1.05 microg/h per ml plasma flow were determined. There was a reduction in CFC at the lowest dose, and a tendency to further reduction at the higher doses used, reaching a decrease in CFC of 20%. The effects on CFC of the high and the middle dose did not differ. The reflection coefficient for albumin was increased by 31% following infusion of the highest dose of Y-27632. We conclude that hydraulic and protein microvascular permeability increase by Rho kinase activation, and that Rho kinase is involved in regulation of microvascular permeability.


Experimental Neurology | 2017

Differential effects of gaseous versus injectable anesthetics on changes in regional cerebral blood flow and metabolism induced by l-DOPA in a rat model of Parkinson's disease

Zisis Bimpisidis; Carl M. Öberg; Natallia Maslava; M. Angela Cenci; Cornelia Lundblad

ABSTRACT Preclinical imaging of brain activity requires the use of anesthesia. In this study, we have compared the effects of two widely used anesthetics, inhaled isoflurane and ketamine/xylazine cocktail, on cerebral blood flow and metabolism in a rat model of Parkinsons disease and l‐DOPA‐induced dyskinesia. Specific tracers were used to estimate regional cerebral blood flow (rCBF ‐ [14C]‐iodoantipyrine) and regional cerebral metabolic rate (rCMR ‐ [14C]‐2‐deoxyglucose) with a highly sensitive autoradiographic method. The two types of anesthetics had quite distinct effects on l‐DOPA‐induced changes in rCBF and rCMR. Isoflurane did not affect either the absolute rCBF values or the increases in rCBF in the basal ganglia after l‐DOPA administration. On the contrary, rats anesthetized with ketamine/xylazine showed lower absolute rCBF values, and the rCBF increases induced by l‐DOPA were masked. We developed a novel improved model to calculate rCMR, and found lower metabolic activities in rats anesthetized with isoflurane compared to animals anesthetized with ketamine/xylazine. Both anesthetics prevented changes in rCMR upon l‐DOPA administration. Pharmacological challenges in isoflurane‐anesthetized rats indicated that drugs mimicking the actions of ketamine/xylazine on adrenergic or glutamate receptors reproduced distinct effects of the injectable anesthetics on rCBF and rCMR. Our results highlight the importance of anesthesia in studies of cerebral flow and metabolism, and provide novel insights into mechanisms mediating abnormal neurovascular responses to l‐DOPA in Parkinsons disease. HIGHLIGHTSIsoflurane does not affect basal rCBF values or L‐DOPA‐induced increases in rCBFKetamine/xylazine reduces basal rCBF values and masks the L‐DOPA‐induced hemodynamic effectsA novel, improved model for calculation of rCMR is describedIsoflurane reduces rCMR, and both anesthetics prevent L‐DOPA‐induced changes in rCMRKetamine/xylazine effects on rCBF and on rCMR are mediated through adrenergic and glutamate receptors.


Journal of Trauma-injury Infection and Critical Care | 2012

Prostacyclin reduces plasma volume loss after skeletal muscle trauma in the rat.

Peter Bansch; Cornelia Lundblad; Per-Olof Grände; Peter Bentzer

BACKGROUND Trauma induces transcapillary leakage of fluid and proteins because of increased microvascular permeability. Based on studies showing that prostacyclin (PGI2) has permeability-reducing properties, in the present study, we investigated whether PGI2 reduces plasma volume (PV) loss after a nonhemorrhagic trauma. METHODS The study was performed on anesthetized Sprague-Dawley rats exposed to a controlled standardized blunt trauma to the abdominal rectus muscle. Thereafter, the animals were randomized to treatment with either PGI2 (2 ng/kg per minute) or 0.9% NaCl. PV was estimated before and 3 hours after the trauma using 125I-albumin as tracer. In separate experiments, the transcapillary escape rate of 125I-albumin was calculated and plasma concentrations of cytokines were measured after both treatments. RESULTS Average PV at baseline was 41.6 mL/kg ± 2.5 mL/kg and 42.3 mL/kg ± 1.7 mL/kg in the PGI2 and NaCl animals, respectively. PV was decreased by 22% ± 8% in the NaCl animals and by 11% ± 9% in the PGI2 animals 3 hours after the trauma (p < 0.05). Trauma induced a decrease in mean arterial blood pressure and an increase in hematocrit in both groups. There were no differences in urine production and mean arterial blood pressure between the PGI2 and NaCl animals. The transcapillary escape rate for albumin was calculated for one hour starting 30 minutes after the trauma and was 15.1% ± 2.4% per hour in the PGI2 animals and 17.4% ± 3.3% per hour in the NaCl animals (p = 0.09). Interleukin 6 concentration 3 hours after the trauma was lower in the PGI2 animals than in the NaCl animals (p < 0.05). CONCLUSION We conclude that PGI2 attenuates PV loss after blunt muscle trauma. The vascular effects of PGI2 are associated with a modulation of the trauma-induced inflammatory response.


NeuroImage | 2012

Impact of L-DOPA treatment on regional cerebral blood flow and metabolism in the basal ganglia in a rat model of Parkinson's disease.

K. Elisabet Ohlin; Irene Sebastianutto; Chris E. Adkins; Cornelia Lundblad; Paul R. Lockman; M. Angela Cenci

Collaboration


Dive into the Cornelia Lundblad's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge