Cornelia Rauh
Technical University of Berlin
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Cornelia Rauh.
Saudi Journal of Biological Sciences | 2016
Oksana Sytar; Irene Hemmerich; Marek Zivcak; Cornelia Rauh; Marian Brestic
Bioactive phenolic compounds are powerful antioxidants in traditionally used medicinal and industrial crop plants and have attracted increased interest in the last years in their application and role in non-destructive methodology for pre-screening analysis of some stress factors. In this study the qualitative target was linked with future possible applications of received data for improving non-destructive methodology as well as for improving existing knowledge regarding antioxidant content in some plant species. Comparative analysis of total phenolics, flavonoid contents, phenolic acid composition, and antioxidant activity in known east central Europe medicinal and industrial crop plants of 26 species of families Asteraceae, Rosaceae and Lamiaceae was done. Among the investigated leaf extracts the highest total phenolic, total flavonoid contents and antioxidant activity have been seen for Stachys byzantine L. (Lamiaceae), Calendula officinalis L. (Asteraceae) and for Potentilla recta L. (Rosaceae). The highest syringic acid content has been found in the leaf extracts of plant family Asteraceae – in the range from 0.782 to 5.078 mg g−1 DW. The representative’s family Rosaceae has a higher content of p-anisic acid in the range 0.334–3.442 mg g−1DW compared to the leaf extracts of families Lamiaceae and Asteraceae. The comparative study showed significant differences of content of phenolic acids in the leaf extracts of different representative’s families Rosaceae, Asteraceae and Lamiaceae. We suggest that the presence of some phenolic acids can be used as a possible marker for family botanical specifications of representative families Asteraceae and Rosaceae. It was supposed that some pharmacological effects can be connected with the analyzed data.
High Pressure Research | 2007
A. Baars; Cornelia Rauh; Antonio Delgado
The impact of different viscous substances on homogeneous thermal treatment during high pressure processes is exemplified for a cylinder piston system. Therefore, the relevant equations of thermofluid dynamics have been examined and conditions for homogeneous thermal processing have been set up. Furthermore, the analysis of an n-order inactivation kinetic delivers criteria for insensitivity of reactions to spatial temperature heterogeneities. The findings have been applied to a short time high pressure process and compared with results of numerical simulations. Good agreement could be achieved.
Frontiers in Microbiology | 2015
Christian Hertwig; Veronika Steins; Kai Reineke; Antje Rademacher; Michael Klocke; Cornelia Rauh; Oliver Schlüter
This study investigated the inactivation efficiency of cold atmospheric pressure plasma treatment on Bacillus subtilis endospores dependent on the used feed gas composition and on the surface, the endospores were attached on. Glass petri-dishes, glass beads, and peppercorns were inoculated with the same endospore density and treated with a radio frequency plasma jet. Generated reactive species were detected using optical emission spectroscopy. A quantitative polymerase chain reaction (qPCR) based ratio detection system was established to monitor the DNA damage during the plasma treatment. Argon + 0.135% vol. oxygen + 0.2% vol. nitrogen as feed gas emitted the highest amounts of UV-C photons and considerable amount of reactive oxygen and nitrogen species. Plasma generated with argon + 0.135% vol. oxygen was characterized by the highest emission of reactive oxygen species (ROS), whereas the UV-C emission was negligible. The use of pure argon showed a negligible emission of UV photons and atomic oxygen, however, the emission of vacuum (V)UV photons was assumed. Similar maximum inactivation results were achieved for the three feed gas compositions. The surface structure had a significant impact on the inactivation efficiency of the plasma treatment. The maximum inactivation achieved was between 2.4 and 2.8 log10 on glass petri-dishes and 3.9 to 4.6 log10 on glass beads. The treatment of peppercorns resulted in an inactivation lower than 1.0 log10. qPCR results showed a significant DNA damage for all gas compositions. Pure argon showed the highest results for the DNA damage ratio values, followed by argon + 0.135% vol. oxygen + 0.2% vol. nitrogen. In case of argon + 0.135% vol. oxygen the inactivation seems to be dominated by the action of ROS. These findings indicate the significant role of VUV and UV photons in the inactivation process of B. subtilis endospores.
Computers & Mathematics With Applications | 2014
Daniela Anderl; Simon Bogner; Cornelia Rauh; Ulrich Rüde; Antonio Delgado
This paper presents an enhancement to the free surface lattice Boltzmann method (FSLBM) for the simulation of bubbly flows including rupture and breakup of bubbles. The FSLBM uses a volume of fluid approach to reduce the problem of a liquid-gas two-phase flow to a single-phase free surface simulation. In bubbly flows compression effects leading to an increase or decrease of pressure in the suspended bubbles cannot be neglected. Therefore, the free surface simulation is augmented by a bubble model that supplies the missing information by tracking the topological changes of the free surface in the flow. The new model presented here is capable of handling the effects of bubble breakup and coalesce without causing a significant computational overhead. Thus, the enhanced bubble model extends the applicability of the FSLBM to a new range of practically relevant problems, like bubble formation and development in chemical reactors or foaming processes.
Annals of the New York Academy of Sciences | 2010
Antonio Delgado; L. Kulisiewicz; Cornelia Rauh; Rainer Benning
Some substances of technological importance reveal phase change phenomena in the pressure and temperature range typically applied in biotechnology and food processing. For example, media with high molar volumes like edible oils and fats undergo liquid–solid phase transition at pressure increases up to several hundred megapascals. This article is concerned with theoretical considerations of the line of coexistence of solid and liquid phases in the pressure and temperature domain that corresponds to the phase boundary as a function of temperature and pressure. A universal model equation based on the equilibrium thermodynamics allowing prediction of the phase transition line of homogeneous media with high molar volume is presented. Approximate solutions of the model equation are discussed, which allow the phase boundary of substances with high molar volume to be described by a linear relation at least sequentially. The methods of experimental determination of the phase boundary under high pressure are presented and an attempt is made to validate the theoretical model with respect to the experimental data.
Food & Function | 2014
Daniela Anderl; Martin Bauer; Cornelia Rauh; Ulrich Rüde; Antonio Delgado
The adsorption process and the resulting dynamic surface tension in the context of protein foams were studied. A diffusion-advection equation is solved using a lattice Boltzmann method (LBM) in order to simulate the adsorption of surfactants on a surface. With different adsorption isotherms, different surfactants can be modelled. The advection is driven by a flow field coming from the LBM. The phase transition is implemented with a free surface LBM approach where the liquid-gas two-phase flow is simplified to a single-phase free surface flow by using a volume of fluid approach. Looking at the different time scales for diffusion and advection, which are determined by the diffusion coefficient and the viscosity, respectively, the LBM is limited due to time and space resolution. The rates of protein transport to a surface by diffusion and by advection are investigated which indicate that diffusion is only relevant for modelling long-time studies. For those time ranges and low concentrations, the diffusion of proteins from a bulk to a surface of a droplet is simulated and compared with the literature. As a next step, situations as in protein foams are assumed. High concentrations of proteins, e.g. as in milk, result in a simplified scenario where neither diffusion nor advection is important. This is analysed theoretically which suggests an instantaneous change of surface tension. To examine the stability of foam lamellae, this is used for further simulations. Two bubbles rise close to each other with globally different surface tensions as for pure water and water with proteins. Depending on these surface tensions and the initial distance, the bubbles coalesce faster for high surface tensions and show less secondary motions for lower surface tension. It is concluded that bubbles in protein foams coalesce only at shorter distances than in pure water.
Frontiers in Microbiology | 2015
Robert Sevenich; Kai Reineke; Philipp Hecht; Antje Fröhling; Cornelia Rauh; Oliver Schlüter; Dietrich Knorr
Much research has been conducted to comprehend the mechanisms of high pressure (HP) inactivation of spores in aqueous systems but for food model systems these information are scarce. In these systems spores can interact with ingredients which then could possibly lead to retarded or reduced inactivation, which can cause a problem for the sterilization process. The protective mechanism of a reduced aw-value is still unclear. HP processing might prove valuable to overcome protective effects of solutes and achieve shorter process times for sterilization under HP. To gain insight into the underlying mechanisms five aw-values (0.9, 0.92, 0.94, 0.96, 1) were adjusted with two different solutes (NaCl, sucrose). Solutions were inoculated with spores of Bacillus amyloliquefaciens and treated at 105, 110, and 115°C at 600 MPa. Further a thermal inactivation was conducted at the same temperatures for a comparison with the HP data. Afterward, the influence of HP high temperature treatment on the inactivation, the dipicolinic acid (DPA)-release and membrane constitution was assessed by plate count, HPLC and flow cytometry (FCM). The results show that during HP treatments sucrose and salt both have a protective effect, in which the influence of sucrose on the retarded inactivation is higher. The threshold water activities (aw), which is 0.94, here salt and sucrose have a significant influence on the inactivation. The comparison of thermal (105–115°C) and HP and high temperature (600 MPa, 105–115°C) treated samples showed that the time needed to achieve a 4–5 log10 inactivation is reduced from 45 (aw = 1) to 75 (aw = 0.9) min at 105°C to 3 (aw = 1) to 15 (aw = 0.9) minutes at 600 MPa and 105°C. The release of DPA is the rate limiting step of the inactivation and therefore monitoring the release is of great interest. The DPA-release is slowed down in high concentrated solutions (e.g., sucrose, salt) in comparison to aw 1. Since there is a difference in the way the solutes protect the spore it could be seen as an inner spore membrane effect. Maybe as shown for vegetative microorganism the solutes can interact with membranes, e.g., the inner spore membrane. Flow cytometry (FCM) measurement data show a similar trend.
Journal of Lightwave Technology | 2012
Giovanni Luzi; Philipp Epple; M. Scharrer; Ken Fujimoto; Cornelia Rauh; Antonio Delgado
Microstructured optical fibers (MOFs) achieve their desired performance via a pattern of holes that run trough the whole length of the fiber. The variation of the hole pattern allows the production of a variety of optical effects. However, the cross-sectional hole structure can be different from that designed in the preform, due to the combined effects of surface tension and internal pressure. The present paper focuses on the comparison between experiments and numerical calculation of a six hole-optical fiber taking into account the effects of surface tension and internal hole-pressure, since those are of essential importance during drawing. It is shown that the numerical computations deliver reliable results for practical applications and can be used as a predictive tool for fiber development, as long as the inner pressure or the temperature do not exceed too high values.
Applied Mathematics and Computation | 2016
Naveed Iqbal; Cornelia Rauh
A numerical model is developed in the framework of OpenFOAM; an open source computational fluid dynamics (CFD) simulation code to simulate particle laden dense flows. The model uses discrete element method (DEM) for the discrete/particle phase and computational fluid dynamics approach (CFD) for the fluid/continuum phase. In current study, validation of the model is done in two steps. In first step the drag model is validated by comparing the results of settling velocity of spherical particle. In second step, spout fluidization test cases with different operating conditions are simulated and results of numerical simulation of spout-fluidized bed are compared against experimental and simulation results reported in literature. The isosurface plots of solid volume fraction show a good qualitative prediction of different flow regimes. The particle velocity profiles in the vertical direction for different test cases corresponding to different flow regimes are plotted and compared with the literature data. The predictions of the model are in good agreement with the experimental and numerical results reported in the literature.
Journal of Lightwave Technology | 2010
Giovanni Luzi; Philipp Epple; M. Scharrer; Ken Fujimoto; Cornelia Rauh; Antonio Delgado
The present contribution deals with thermofluidynamical features occurring during the drawing of capillaries for microstructured optical fibres. Here, the process stability depends strongly on flow and thermal processes taking place as a preform is heated and drawn in the furnace. This is the case particularly for hollow fibres for which the existence of the inner hole directly depends on material parameters such as the surface tension and the rheological properties and on process parameter such as hole internal pressure and the process temperature. A fluid-mechanics model suggested in the literature that makes use of asymptotic analysis based on small aspect ratio of the micro capillaries, has been revisited and improved recently and the leading-order equations have been then examined in some asymptotic limits by Luzi et al. Starting from the novel class of solutions of the simplified equations of motion the present paper focuses on the effect of both surface tension and internal hole pressure since those are of essential importance during drawing. Thus, comparisons with experimental data are performed, in order to validate the analytical model developed in, which will be briefly presented here. The theoretical model gives very accurate predictions both when the internal hole is pressurized or when no pressure is applied, as long as the temperature does not reach too high values.