Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cornelia Zumbrunn is active.

Publication


Featured researches published by Cornelia Zumbrunn.


Bioorganic & Medicinal Chemistry Letters | 2008

N-Glycine-sulfonamides as potent dual orexin 1/orexin 2 receptor antagonists.

Hamed Aissaoui; Ralf Koberstein; Cornelia Zumbrunn; John Gatfield; Catherine Brisbare-Roch; Francois Jenck; Alexander Treiber; Christoph Boss

A series of dual OX(1)R/OX(2)R orexin antagonists was prepared based on a N-glycine-sulfonamide core. SAR studies of a screening hit led to compounds with low nanomolar affinity for both receptors and good oral bioavailability. One of these compounds, 47, has demonstrated in vivo activity in rats following oral administration.


Journal of Medicinal Chemistry | 2013

Design, synthesis, and characterization of novel tetrahydropyran-based bacterial topoisomerase inhibitors with potent anti-gram-positive activity.

Jean-Philippe Surivet; Cornelia Zumbrunn; Georg Rueedi; Christian Hubschwerlen; Daniel Bur; Thierry Bruyère; Hans Locher; Daniel Ritz; Wolfgang Keck; Peter Seiler; Christopher Kohl; Jean-Christophe Gauvin; Azely Mirre; Verena Kaegi; Marina Dos Santos; Mika Gaertner; Jonathan Delers; Michel Enderlin-Paput; Maria Boehme

There is an urgent need for new antibacterial drugs that are effective against infections caused by multidrug-resistant pathogens. Novel nonfluoroquinolone inhibitors of bacterial type II topoisomerases (DNA gyrase and topoisomerase IV) have the potential to become such drugs because they display potent antibacterial activity and exhibit no target-mediated cross-resistance with fluoroquinolones. Bacterial topoisomerase inhibitors that are built on a tetrahydropyran ring linked to a bicyclic aromatic moiety through a syn-diol linker show potent anti-Gram-positive activity, covering isolates with clinically relevant resistance phenotypes. For instance, analog 49c was found to be a dual DNA gyrase-topoisomerase IV inhibitor, with broad antibacterial activity and low propensity for spontaneous resistance development, but suffered from high hERG K(+) channel block. On the other hand, analog 49e displayed lower hERG K(+) channel block while retaining potent in vitro antibacterial activity and acceptable frequency for resistance development. Furthermore, analog 49e showed moderate clearance in rat and promising in vivo efficacy against Staphylococcus aureus in a murine infection model.


Journal of Medicinal Chemistry | 2015

Novel tetrahydropyran-based bacterial topoisomerase inhibitors with potent anti-gram positive activity and improved safety profile.

Jean-Philippe Surivet; Cornelia Zumbrunn; Georg Rueedi; Daniel Bur; Thierry Bruyère; Hans Locher; Daniel Ritz; Peter Seiler; Christopher Kohl; Eric A. Ertel; Patrick Hess; Jean-Christophe Gauvin; Azely Mirre; Verena Kaegi; Marina Dos Santos; Stéphanie Kraemer; Mika Gaertner; Jonathan Delers; Michel Enderlin-Paput; Romain Sube; Hakim Hadana; Wolfgang Keck; Christian Hubschwerlen

Novel antibacterial drugs that are effective against infections caused by multidrug resistant pathogens are urgently needed. In a previous report, we have shown that tetrahydropyran-based inhibitors of bacterial type II topoisomerases (DNA gyrase and topoisomerase IV) display potent antibacterial activity and exhibit no target-mediated cross-resistance with fluoroquinolones. During the course of our optimization program, lead compound 5 was deprioritized due to adverse findings in cardiovascular safety studies. In the effort of mitigating these findings and optimizing further the pharmacological profile of this class of compounds, we have identified a subseries of tetrahydropyran-based molecules that are potent DNA gyrase and topoisomerase IV inhibitors and display excellent antibacterial activity against Gram positive pathogens, including clinically relevant resistant isolates. One representative of this class, compound 32d, elicited only weak inhibition of hERG K(+) channels and hNaV1.5 Na(+) channels, and no effects were observed on cardiovascular parameters in anesthetized guinea pigs. In vivo efficacy in animal infection models has been demonstrated against Staphylococcus aureus and Streptococcus pneumoniae strains.


Journal of Medicinal Chemistry | 2017

Synthesis and Characterization of Tetrahydropyran-Based Bacterial Topoisomerase Inhibitors with Antibacterial Activity against Gram-Negative Bacteria

Jean-Philippe Surivet; Cornelia Zumbrunn; Thierry Bruyère; Daniel Bur; Christopher Kohl; Hans Locher; Peter Seiler; Eric A. Ertel; Patrick Hess; Michel Enderlin-Paput; Stéphanie Enderlin-Paput; Jean-Christophe Gauvin; Azely Mirre; Christian Hubschwerlen; Daniel Ritz; Georg Rueedi

There is an urgent unmet medical need for novel antibiotics that are effective against a broad range of bacterial species, especially multidrug resistant ones. Tetrahydropyran-based inhibitors of bacterial type II topoisomerases (DNA gyrase and topoisomerase IV) display potent activity against Gram-positive pathogens and no target-mediated cross-resistance with fluoroquinolones. We report our research efforts aimed at expanding the antibacterial spectrum of this class of molecules toward difficult-to-treat Gram-negative pathogens. Physicochemical properties (polarity and basicity) were considered to guide the design process. Dibasic tetrahydropyran-based compounds such as 6 and 21 are potent inhibitors of both DNA gyrase and topoisomerase IV, displaying antibacterial activities against Gram-positive and Gram-negative pathogens (Staphylococcus aureus, Enterobacteriaceae, Pseudomonas aeruginosa, and Acinetobacter baumannii). Compounds 6 and 21 are efficacious in clinically relevant murine infection models.


Archive | 2004

Novel compounds having an antibacterial activity

Christian Hubschwerlen; Jean Phillippe Surivet; Cornelia Zumbrunn


Archive | 2003

Novel compounds with antibacterial activity

Jean-Philippe Surivet; Cornelia Zumbrunn; Christian Hubschwerlen; Frutos Hoener Annabelle Perez


Archive | 2006

Antibacterial active 5-chinolin derivative

Glenn E. Dale; Sabine Pierau; Mike Cappi; Christopher Gray; Christian Hubschwerlen; Jean-Philippe Surivet; Cornelia Zumbrunn


Archive | 2003

Compounds with anti-bacterial activity

Jean Phillippe Surivet; Cornelia Zumbrunn; Christian Hubschwerlen; Annabelle Perez Frutos Honer


Archive | 2003

Neue verbindungen mit antibakterieller aktivität

Christian Hubschwerlen; Jean Phillippe Surivet; Cornelia Zumbrunn


Archive | 2014

Antibacterial biaromatic derivatives

Sylvaine Cren; Astrid Friedli; Christian Hubschwerlen; Georg Rueedi; Cornelia Zumbrunn

Collaboration


Dive into the Cornelia Zumbrunn's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge