Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cornelis Murre is active.

Publication


Featured researches published by Cornelis Murre.


Molecular Cell | 2010

Simple Combinations of Lineage-Determining Transcription Factors Prime cis-Regulatory Elements Required for Macrophage and B Cell Identities

Sven Heinz; Christopher Benner; Nathanael J. Spann; Eric Bertolino; Yin C. Lin; Peter Laslo; Jason X. Cheng; Cornelis Murre; Harinder Singh; Christopher K. Glass

Genome-scale studies have revealed extensive, cell type-specific colocalization of transcription factors, but the mechanisms underlying this phenomenon remain poorly understood. Here, we demonstrate in macrophages and B cells that collaborative interactions of the common factor PU.1 with small sets of macrophage- or B cell lineage-determining transcription factors establish cell-specific binding sites that are associated with the majority of promoter-distal H3K4me1-marked genomic regions. PU.1 binding initiates nucleosome remodeling, followed by H3K4 monomethylation at large numbers of genomic regions associated with both broadly and specifically expressed genes. These locations serve as beacons for additional factors, exemplified by liver X receptors, which drive both cell-specific gene expression and signal-dependent responses. Together with analyses of transcription factor binding and H3K4me1 patterns in other cell types, these studies suggest that simple combinations of lineage-determining transcription factors can specify the genomic sites ultimately responsible for both cell identity and cell type-specific responses to diverse signaling inputs.


Molecular and Cellular Biology | 2000

Helix-Loop-Helix Proteins: Regulators of Transcription in Eucaryotic Organisms

Mark Eben Massari; Cornelis Murre

The helix-loop-helix (HLH) family of transcriptional regulatory proteins are key players in a wide array of developmental processes. Over 240 HLH proteins have been identified to date in organisms ranging from the yeast Saccharomyces cerevisiae to humans (6). Studies in Xenopus laevis, Drosophila melanogaster, and mice have convincingly demonstrated that HLH proteins are intimately involved in developmental events such as cellular differentiation, lineage commitment, and sex determination. In yeast, HLH proteins regulate several important metabolic pathways, including phosphate uptake and phospholipid biosynthesis (19, 67, 112). In multicellular organisms, HLH factors are required for a multitude of important developmental processes, including neurogenesis, myogenesis, hematopoiesis, and pancreatic development (12, 86, 127, 179). The purpose of this review is to examine the structure and functional properties of HLH proteins. E-box sites: elements mediating cell-type-specific gene transcription. Gene transcription of the immunoglobulin heavy-chain (IgH) gene has long been known to be regulated, in part, by a cis-acting DNA element known as the IgH intronic enhancer (109, 156). By in vivo methylation protection assays, a number of sites were identified in both the IgH and the kappa light-chain gene enhancers which were specifically protected in B cells but not in nonlymphoid cells (41). These elements shared a signature motif which consisted of the core hexanucleotide sequence, CANNTG, and were subsequently dubbed E boxes (41). A total of five E-box elements are present in the IgH gene enhancer: μE1, μE2, μE3, μE4, and μE5. The Ig kappa enhancer also contains three cannonical E boxes, designated κE1, κE2, and κE3. E-box sites have been subsequently found in B-cell-specific promoter and enhancer elements, including a subset of Ig light-chain gene promoters, the IgH and Ig light-chain 3′ enhancers, and, more recently, the λ5 promoter (110, 118, 156). E-box elements have also been identified in promoter and enhancer elements that regulate muscle-, neuron-, and pancreas-specific gene expression. For example, in muscle, the muscle creatine kinase gene, acetylcholine receptor genes α and δ, and the myosin light-chain gene all require E-box elements for full activity (27, 51, 85). A number of genes whose expression is limited to the pancreas also require E-box sites for proper expression. The insulin and somatostatin genes, for example, contain E-box sites that, when multimerized, are sufficient to regulate pancreatic β-cell-specific gene expression (168). More recently, E-box regulatory sites have been identified in a number of neuron-specific genes, including the opsin, hippocalcin, beta 2 subunit of the neuronal nicotinic acetylcholine receptor, and muscarinic acetylcholine receptor genes (1, 21, 52, 125). E-box sites: cognate recognition sequence for HLH proteins. Two proteins, termed E12 and E47, were originally identified as binding to the κE2/μE5 site (65, 102). They have a region of homology with the Drosophila Daughterless protein, the myogenic differentiation factor MyoD, members of the achaete-scute gene complex, and the Myc family of transcription factors (102). This stretch of conserved residues, known as the Myc homology region, appeared to be critical for the DNA binding properties of E12 and E47 (102). The E12 and E47 proteins, which differ only within this Myc homology region, arise by alternative splicing of the E2A gene (157). This conserved sequence, which was modeled as two amphipathic alpha helices separated by a flexible loop structure, was named the HLH motif and shown to function as a dimerization domain. The HLH structure. The solution structure of the basic HLH (bHLH)-leucine zipper (LZ) factor Max first confirmed the existence of the HLH motif (44). Subsequently, the three-dimensional structure of the E47 bHLH polypeptide bound to its E-box recognition site, CACCTG, has been solved at 2.8-Å resolution (38). A number of interesting features were revealed from analysis of the E47 crystal structure. The E47 dimer forms a parallel, four-helix bundle which allows the basic region to contact the major groove (38). In addition to the basic region, residues in the loop and helix 2 also make contact with DNA (38). Stable interaction of the HLH domain is favored by van der Waals interactions between conserved hydrophobic residues (38). The E47 dimer is centered over the E box, with each monomer interacting with either a CAC or CAG half-site. A glutamate present in the basic region of each subunit makes contact with the cytosine and adenine bases in the E-box half-site. An adjacent arginine residue stabilizes the position of the glutamate by direct interaction with these nucleotides and additionally the phosphodiester backbone. Both the glutamate and the arginine residues are conserved in most bHLH proteins, consistent with a role in specific DNA binding (6, 38, 102). Classification of the HLH proteins. Owing to the large number of HLH proteins that have been described, a classification scheme that was based upon tissue distribution, dimerization capabilities, and DNA-binding specificities was devised (Fig. ​(Fig.1)1) (101). Class I HLH proteins, also known as the E proteins, include E12, E47, HEB, E2-2, and Daughterless. These proteins are expressed in many tissues and capable of forming either homo- or heterodimers (103). The DNA-binding specificity of class I proteins is limited to the E-box site. Class II HLH proteins, which include members such as MyoD, myogenin, Atonal, NeuroD/BETA2, and the achaete-scute complex, show a tissue-restricted pattern of expression. With few exceptions, they are incapable of forming homodimers and preferentially heterodimerize with the E proteins. Class I-class II heterodimers can bind both canonical and noncanonical E-box sites (103). Class III HLH proteins include the Myc family of transcription factors, TFE3, SREBP-1, and the microphthalmia-associated transcription factor, Mi. Proteins of this class contain an LZ adjacent to the HLH motif (66, 177). Class IV HLH proteins define a family of molecules, including Mad, Max, and Mxi, that are capable of dimerizing with the Myc proteins or with one another (7, 22, 174). A group of HLH proteins that lack a basic region, including Id and emc, define the class V HLH proteins (18, 39, 47). Class V members are negative regulators of class I and class II HLH proteins (18, 39, 47). Class VI HLH proteins have as their defining feature a proline in their basic region. This group includes the Drosophila proteins Hairy and Enhancer of split (76, 141). Finally, the class VII HLH proteins are categorized by the presence of the bHLH-PAS domain and include members such as the aromatic hydrocarbon receptor (AHR), the AHR nuclear-translocator (Arnt), hypoxia-inducible factor 1α, and the Drosophila Single-minded and Period proteins (34). FIG. 1 Multiple sequence alignment and classification of some representative members of the HLH family of transcription factors. Shown is a dendrogram created by aligning the sequences of the indicated HLH proteins by the Clustal W algorithm (160). Recently, another classification method of HLH proteins has been described (6). Based on the amino acid sequences of 242 HLH proteins, a phylogenetic tree was created to group family members according to evolutionary relationships (6). Four major groups, A through D, which comprise more than 24 protein families were identified (6). The groupings were based upon DNA-binding specificity as well as conservation of amino acids at certain positions (6). As the number of HLH proteins continues to grow, this evolutionary or “natural” classification may provide a more accurate and convenient means of categorization.


Cell | 1994

E2A proteins are required for proper B cell development and initiation of immunoglobulin gene rearrangements

Gretchen Bain; Els Robanus Maandag; David J. Izon; Derk Amsen; Ada M. Kruisbeek; Bennett C. Weintraub; Ian E. Krop; Mark S. Schlissel; Ann J. Feeney; Marian van Roon; Martin van der Valk; Hein te Riele; Anton Berns; Cornelis Murre

E12 and E47 are two helix-loop-helix transcription factors that arise by alternative splicing of the E2A gene. Both have been implicated in the regulation of immunoglobulin gene expression. We have now generated E2A (-/-) mice by gene targeting. E2A-null mutant mice fail to generate mature B cells. The arrest of B cell development occurs at an early stage, since no immunoglobulin DJ rearrangements can be detected in homozygous mutant mice. While immunoglobulin germline I mu RAG-1, mb-1, CD19, and lambda 5 transcripts are dramatically reduced in fetal livers of E2A (-/-) mice, B29 and mu degrees transcripts are present, but at lower levels. In addition, we show that Pax-5 transcripts are significantly reduced in fetal livers of E2A (-/-) mice. These data suggest a crucial role for E2A products as central regulators in early B cell differentiation.


Molecular and Cellular Biology | 1997

E2A deficiency leads to abnormalities in alphabeta T-cell development and to rapid development of T-cell lymphomas.

Gretchen Bain; I. Engel; E. C. Robanus Maandag; H. P. J. Te Riele; Joseph R. Voland; L. L. Sharp; Jerold Chun; B. Huey; D. Pinkel; Cornelis Murre

The E2A gene products, E12 and E47, are critical for proper early B-cell development and commitment to the B-cell lineage. Here we reveal a new role for E2A in T-lymphocyte development. Loss of E2A activity results in a partial block at the earliest stage of T-lineage development. This early T-cell phenotype precedes the development of a T-cell lymphoma which occurs between 3 and 9 months of age. The thymomas are monoclonal and highly malignant and display a cell surface phenotype similar to that of immature thymocytes. In addition, the thymomas generally express high levels of c-myc. As assayed by comparative genomic hybridization, each of the tumor populations analyzed showed a nonrandom gain of chromosome 15, which contains the c-myc gene. Taken together, the data suggest that the E2A gene products play a role early in thymocyte development that is similar to their function in B-lineage determination. Furthermore, the lack of E2A results in development of T-cell malignancies, and we propose that E2A inactivation is a common feature of a wide variety of human T-cell proliferative disorders, including those involving the E2A heterodimeric partners tal-1 and lyl-1.


Nature Immunology | 2010

A global network of transcription factors, involving E2A, EBF1 and Foxo1, that orchestrates B cell fate

Yin C. Lin; Suchit Jhunjhunwala; Christopher Benner; Sven Heinz; Eva Welinder; Robert Månsson; Mikael Sigvardsson; James Hagman; Celso A. Espinoza; Janusz Dutkowski; Trey Ideker; Christopher K. Glass; Cornelis Murre

It is now established that the transcription factors E2A, EBF1 and Foxo1 have critical roles in B cell development. Here we show that E2A and EBF1 bound regulatory elements present in the Foxo1 locus. E2A and EBF1, as well as E2A and Foxo1, in turn, were wired together by a vast spectrum of cis-regulatory sequences. These associations were dynamic during developmental progression. Occupancy by the E2A isoform E47 directly resulted in greater abundance, as well as a pattern of monomethylation of histone H3 at lysine 4 (H3K4) across putative enhancer regions. Finally, we divided the pro-B cell epigenome into clusters of loci with occupancy by E2A, EBF and Foxo1. From this analysis we constructed a global network consisting of transcriptional regulators, signaling and survival factors that we propose orchestrates B cell fate.


Nature Immunology | 2001

Regulation of the helix-loop-helix proteins, E2A and Id3, by the Ras-ERK MAPK cascade

Gretchen Bain; Celia B. Cravatt; Cindy Loomans; José Alberola-Ila; Stephen M. Hedrick; Cornelis Murre

Activation of mitogen-activated protein kinase (MAPK) pathways leads to cellular differentiation and/or proliferation in a wide variety of cell types, including developing thymocytes. The basic helix-loop-helix (bHLH) proteins E12 and E47 and an inhibitor HLH protein, Id3, play key roles in thymocyte differentiation. We show here that E2A DNA binding is lowered in primary immature thymocytes consequent to T cell receptor (TCR)-mediated ligation. Whereas expression of E2A mRNA and protein are unaltered, Id3 transcripts are rapidly induced upon signaling from the TCR. Activation of Id3 transcription is regulated in a dose-dependent manner by the extracellular signal-regulated kinase (ERK) MAPK module. These observations directly connect the ERK MAPK cascade and HLH proteins in a linear pathway.


Cell | 2008

The 3D Structure of the Immunoglobulin Heavy-Chain Locus: Implications for Long-Range Genomic Interactions

Suchit Jhunjhunwala; Menno C. van Zelm; Mandy M. Peak; Steve Cutchin; Roy Riblet; Jacques J.M. van Dongen; Frank Grosveld; Tobias Knoch; Cornelis Murre

The immunoglobulin heavy-chain (Igh) locus is organized into distinct regions that contain multiple variable (V(H)), diversity (D(H)), joining (J(H)) and constant (C(H)) coding elements. How the Igh locus is structured in 3D space is unknown. To probe the topography of the Igh locus, spatial distance distributions were determined between 12 genomic markers that span the entire Igh locus. Comparison of the distance distributions to computer simulations of alternative chromatin arrangements predicted that the Igh locus is organized into compartments containing clusters of loops separated by linkers. Trilateration and triple-point angle measurements indicated the mean relative 3D positions of the V(H), D(H), J(H), and C(H) elements, showed compartmentalization and striking conformational changes involving V(H) and D(H)-J(H) elements during early B cell development. In pro-B cells, the entire repertoire of V(H) regions (2 Mbp) appeared to have merged and juxtaposed to the D(H) elements, mechanistically permitting long-range genomic interactions to occur with relatively high frequency.


Cell | 1994

extradenticle Raises the DNA binding specificity of homeotic selector gene products

Marc A. van Dijk; Cornelis Murre

Recently, a Drosophila gene has been identified, extradenticle, whose product modulates the morphological consequences of homeotic selector genes. We show here that extradenticle protein raises the DNA binding specificity of Ultrabithorax and abdominal-A but not that of Abdominal-B. We further show that extradenticle modulates the DNA binding activity of engrailed to a different target site. While a region N-terminal of the extradenticle homeodomain is required for Ultrabithorax and abdominal-A cooperativity, engrailed requires a domain C-terminal of the extradenticle homeobox. These studies show directly how the DNA binding specificity of selector gene products can be raised by extradenticle and provides a mechanism, cooperative DNA binding, that allows selector gene products to achieve some of their biological specificity.


Molecular Cell | 2000

E2A and EBF Act in Synergy with the V(D)J Recombinase to Generate a Diverse Immunoglobulin Repertoire in Nonlymphoid Cells

William J. Romanow; Anton W. Langerak; Peter Goebel; Ingrid L. M. Wolvers-Tettero; Jacques J.M. van Dongen; Ann J. Feeney; Cornelis Murre

Immunoglobulin (Ig) and T cell receptor (TCR) genes are assembled during lymphocyte maturation through site-specific V(D)J recombination events. Here we show that E2A proteins act in concert with RAG1 and RAG2 to activate Ig VK1J but not Iglambda VlambdaIII-Jlambda1 rearrangement in an embryonic kidney cell line. In contrast, EBF, but not E2A, promotes VlambdaIII-Jlambda1 recombination. Either E2A or EBF activate IgH DH4J recombination but not V(D)J rearrangement. The Ig coding joints are diverse, contain nucleotide deletions, and lack N nucleotide additions. IgK VJ recombination requires the presence of the E2A transactivation domains. These observations indicate that in nonlymphoid cells a diverse Ig repertoire can be generated by the mere expression of the V(D)J recombinase and a transcriptional regulator.


Nature Immunology | 2003

E-proteins directly regulate expression of activation-induced deaminase in mature B cells

Camil Sayegh; Melanie W. Quong; Yasutoshi Agata; Cornelis Murre

Activated mature B cells in which the DNA-binding activity of E-proteins has been disrupted fail to undergo class switch recombination. Here we show that activated B cells overexpressing the antagonist helix-loop-helix protein Id3 do not induce expression of the murine Aicda gene encoding activation-induced deaminase (AID). A highly conserved intronic regulatory element in Aicda binds E-proteins both in vitro and in vivo. The transcriptional activity of this element is regulated by E-proteins. We show that the enforced expression of AID in cells overexpressing Id3 partially restores class switch recombination. Taken together, our observations link helix-loop-helix activity and Aicda gene expression in a common pathway, in which E-protein activity is required for the efficient induction of Aicda transcription.

Collaboration


Dive into the Cornelis Murre's collaboration.

Top Co-Authors

Avatar

Gretchen Bain

University of California

View shared research outputs
Top Co-Authors

Avatar

Richard Rivera

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Yin C. Lin

University of California

View shared research outputs
Top Co-Authors

Avatar

Isaac Engel

La Jolla Institute for Allergy and Immunology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge